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Introduction 

Risk models play a crucial role in preventing illnesses in hospitals, particularly in intensive care 

units (ICU), where patients are vulnerable to several complications. When informed of unforeseen 

potential risks, clinical staff may be able to prevent the disease or be better prepared to care for the 

patient. As a result, many risk models have been developed for various diseases e.g., sepsis (Henry 

et al. 2015), pneumonia (Carmo et al. 2021). Prevention of major illnesses can have significant 

impact on both clinical and economic of healthcare. For example, Paolli et al. (2018) show that 

just 1% reduction in sepsis can approximately reduce hospital costs in USA by about $450M (by 

2016 estimates). 

Electronic Medical Records (EMR), containing clinical records of patients, contain valuable 

information to develop predictive models for various risks. Previous studies, e.g., Ibrahim et al. 

(2020), have shown that patient populations afflicted by a disease (such as sepsis) show substantial 

heterogeneity. Distinct subpopulations, called subtypes, having relatively homogeneous clinical 

characteristics within the larger population can be found for most diseases. Accounting for such 

subtypes during risk modeling has been shown to improve predictive accuracy (Ibrahim et al. 

2020). Moreover, such models also enable personalization of subsequent clinical decision making 

to each subtype. 
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Previous approaches to account for subtypes during risk modeling broadly fall into two categories. 

The first includes a ‘cluster-then-predict’ approach, where clustering is first done independently 

to find subtypes and then predictive models (e.g., binary classifiers) for each of these clusters are 

trained. Since clustering is performed independent of classifier training, such an approach may not 

discover latent cluster structures in high-dimensional EMR data that are beneficial for subsequent 

classification. This has led to the development of the second category of approaches that perform 

simultaneous clustering and classification. State-of-the-art approaches in this category include 

GRASP (Zhang et al. 2021) and DICE (Huang et al 2021). These approaches, in general, are found 

to outperform cluster-than-predict approaches. However, they enforce stratification through 

homogeneous risk outcomes in each cluster. We empirically observe that this additional constraint 

on the subtype reduces the accuracy of risk prediction. Further, subtypes may be homogeneous 

with respect to any clinical characteristic, not necessarily the risk and such constraints may not 

lead to clinically meaningful subtypes.  

We address this gap by designing a model that learns the underlying clinical heterogeneity and 

effectively utilizes it to improve risk prediction. We adopt the design science paradigm (Hevner et 

al. 2008) to design a new IT artifact, a predictive model based on deep neural networks. Following 

the guidelines of computational design science (Rai 2017), our artifact’s design is motivated by 

key domain characteristics, i.e., the need for modeling heterogeneity in patient data for clinical 

risk modeling in and its utility and superiority over previous artifacts – state-of-the-art models for 

simultaneous risk prediction and patient subtyping – is empirically demonstrated using suitable 

metrics in the context of two clinically important ICU complications.  
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Our model, called Multinet, is a subtype-aware risk modeling approach that simultaneously learns 

the underlying heterogeneity and effectively utilizes it to improve risk prediction. Leveraging the 

representation learning power of deep neural networks, Multinet finds latent well-clustered 

representations from temporal clinical data, and, in tandem, cluster-specific classification networks 

are trained to predict risk outcomes. By training in an end-to-end manner latent representations are 

learnt based on feedback from the classification networks.  

We evaluate Multinet for the task of predicting risk of two life-threatening ICU complications: 

Sepsis and Acute Respiratory Distress Syndrome (ARDS). Sepsis occurs when the body’s response 

to infection causes tissue damage, organ failure, or death. Globally, in 2017, around 48.9 million 

developed sepsis, and there were 11 million sepsis-related deaths (Rudd et al. 2020). The costs for 

managing sepsis in U.S. hospitals – at USD 24 billion annually (13% of U.S. healthcare expenses) 

– exceed those for any other health condition (Paoli et al. 2018). ARDS often manifests as 

respiratory failure characterized by rapid onset of widespread inflammation in the lungs. Globally, 

ARDS affects more than 3 million annually, contributing to about 10% of ICU admissions; with a 

high mortality of 35-46% (Fan et al. 2018).  
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Problem Formulation 

Electronic Medical Records (EMR) contain clinical data of patients, such as lab measurements and 

prescribed medications. Most of the data is temporal due to repeated measurements to monitor the 

health of patients. Given a sequence of such patient records 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵), where 𝒙𝒊(𝒊 =

𝟏, … , 𝑵) is a multi-dimensional vector representing an inpatient clinical event record (for 𝑁 

patients) at time step 𝒕. Let 𝒙𝒊,𝒕 (∈ ℝ𝑵𝒓) represent the 𝒕𝒕𝒉 record of the 𝒊𝒕𝒉 patient. Each EMR 

record contains 𝑵𝒓 features (e.g., lab measurements, indicators for diagnosed diseases and 

prescribed medications). Given, class labels 𝒚𝒊 ∈ {𝟏, … , 𝑩} associated with every patient record 

𝒙𝒊 and the number of clusters 𝒌, our aim is to simultaneously (i) cluster the 𝑁 time series patient 

records into 𝒌 clusters, each represented by a centroid 𝝁𝒋 ∈ {𝟏, … , 𝒌}, and (ii) build 𝒌 distinct 

supervised classification models for each cluster. Note that during training, labels are used only 

for building the classification models and not for clustering. 

Our Approach: Multinet 

Fig. 1 shows the neural architecture of Multinet that consists of an LSTM based encoder/decoder 

and 𝒌 local networks (𝐿𝑁𝑗). The encoder 𝑓(𝑈): ℝ𝑵𝒓×𝑇 → 𝑍, 𝑍 ∈  ℝ𝑁𝒆  takes in 𝑇 patient records 

and outputs a low-dimensional representation (of size 𝑁𝑒) of the input datapoints. Cluster structure 

is learned in this latent space and representations in each cluster are used in local networks, 

ℎ(𝑊𝑗): 𝑍 → 𝑦𝑗
^ for 𝑗 = {𝟏, … , 𝒌}, to train 𝒌 classification models. In addition, there is an LSTM  
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decoder 𝑔(𝑉): 𝑍 → 𝑋 that is used to reconstruct the input sequence from the embeddings. Multinet 

is parameterized by network weights: 𝑈, 𝑉, {𝑊𝑗}𝑗=1
𝑘 , which are learnt by optimizing a combination 

of losses as described below. 

LSTM Unit 

We now briefly describe the LSTM used in the encoder and decoder. The standard Recurrent 

Neural Network (RNN) cell maps an input sequence 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑇) to an output vector 

sequence 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑇) by using hidden states 𝒉 = (ℎ1, ℎ2, … , ℎ𝑇)  through the following 

model, over time steps 𝑡 = 1 to 𝑡 = 𝑇: 

 

𝑊 denotes the weight matrices and 𝑏 denotes the bias vectors. 𝐻 is the hidden layer function and 

𝑇 is the length of input sequence. In Multinet, the last hidden state vector ℎ𝑇 is used as the lower 

dimensional representation of the patient’s 24-hour medical history. ℎ𝑇 for all patients forms the 

lower dimensional vector space 𝑍. 
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𝐻 is chosen to be the Long-Short-Term-Memory (LSTM) cell that consists of a memory cell to 

store information. The memory vector 𝑐𝑡 can be read, written to, or reset at each time step. Thus, 

the LSTM update takes the form: 

 

𝑖, 𝑜 and 𝑓 are the 3 gates vectors which decide whether the memory is updated, reset to zero or 

whether it is shown to the hidden vector respectively. The entire LSTM cell is differentiable 

allowing us to calculate its gradient function, and the three gating functions are helpful in reducing 

the problem of vanishing gradient that is common in RNN training. 

Loss Function 

The loss function is designed to simultaneously obtain LSTM representations, cluster them in the 

representation space and learn classifiers for each cluster. For clustering, we follow the 

methodology of Deep Embedded Clustering (Xie et al. 2016). The overall loss function 𝐿 is a 

weighted combination, with coefficients 𝛽, 𝛾, 𝛿 > 0, of the reconstruction loss 𝐿𝑟, clustering loss 

𝐿𝑐, cluster balance loss 𝐿𝑏𝑎𝑙 and classification loss 𝐿𝑠:  

𝐿 =  𝐿𝑟 + 𝛽 ∗ 𝐿𝑐 +  𝛾 ∗ 𝐿𝑠 +  𝛿 ∗ 𝐿𝑏𝑎𝑙  (1) 

𝐿𝑐 is defined as the KL divergence loss between the two distributions 𝑃 and 𝑄 defined as  

𝐿𝑐 = 𝐾𝐿(𝑃||𝑄) =  ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 (2) 
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where 𝑞𝑖𝑗 is the probability of assigning the 𝑖𝑡ℎ embedded data point (𝑧𝑖) to the 𝑗𝑡ℎ cluster (with 

centroid 𝜇𝑗), i.e., the soft cluster assignment values for the 𝑖𝑡ℎ data point. It is measured using the 

similarity (via the Student’s t kernel) between the embedded point and the centroid (V. D. Maaten 

and Hinton 2008)  𝑞𝑖𝑗 =
(1+|𝑧𝑖−𝜇𝑗|

2
)

−1

∑ (1+|𝑧𝑖−𝜇𝑗|
2

)
−1

𝑗

 (3). The target distribution 𝑝𝑖𝑗  is defined in terms of 𝑞𝑖𝑗 

itself as:  𝑝𝑖𝑗 =  

𝑞𝑖𝑗
2

∑ 𝑞𝑖𝑗𝑖
⁄

∑
𝑞𝑖𝑗

2

∑ 𝑞𝑖𝑗𝑖
⁄𝑗

 (4). 

The cluster membership distribution 𝑄 (Eq. 3) uses representations 𝑧𝑖 and cluster centroids 𝜇𝑗 

inferred during Multinet training. Following Guo et al. (2017), to improve clustering performance, 

we add the reconstruction loss measured by mean squared error: 

𝐿𝑟 =  ∑ ||𝑥𝑖 − 𝑔(𝑓(𝑥𝑖))||2

𝑁

𝑖=1

 (5) 

In such approaches, the encoder can map the centroids to a single point to make the loss zero and 

thus collapse the clusters resulting in trivial solutions. To address this problem in Multinet we add 

a cluster balance loss to discourage unevenly distributed cluster sizes. We define the ‘soft’ size of 

a cluster 𝐶𝑗 as |𝐶𝑗| =  ∑ 𝑞𝑖𝑗𝑖  and cluster support counts 𝑆 = [|𝐶1|, |𝐶2|, … , |𝐶𝑘|] as a 𝒌-dimensional 

probability distribution. Let 𝑼𝒌 =  1
𝑘⁄ 𝑼(0,1) denote the 𝒌-dimensional uniform distribution 

function. We use the Hellinger distance (𝐻), which measures the dissimilarity between two 

distributions, as the loss 𝐿𝑏𝑎𝑙 = 𝐻(𝑆||𝑈𝑘) =  
1

2
||√𝑆 − √𝑈𝑘||. 𝐿𝑠 is a weighted cross entropy loss 

described in the following section. 
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Multinet Training 

We first pre-train the encoder and decoder with the input data using only the reconstruction loss 

𝐿𝒓 in order to initialize the parameters (𝑼, 𝑽), This is followed by 𝒌-means clustering on 

{𝒛𝒊 = 𝒇(𝒙𝒊; 𝑼)}𝒊=𝟏
𝑵  to obtain cluster centroids {𝝁𝒊}𝒊=𝟏

𝒌  which are used to calculate cluster 

membership and target distributions, 𝑸, 𝑷. After initialization, we train the complete network using 

mini-batch Stochastic Gradient Descent and the loss 𝑳. To stabilize training, we update 𝑷 only 

after every epoch.  

Since the embeddings are gradually updated throughout each iteration of the main training loop, 

we train the LNs for more sub-iterations inside each iteration. The number of sub-iterations 

gradually increases (by 1 for every 5 epochs until a max limit we set to 10). This allows the 𝑳𝑵𝒔 

to learn better from the stabilized clustered embeddings than from the intermediate representations. 

Furthermore, in each sub-iteration, we employ a weighted loss, which results in more robust 

classifiers, as demonstrated by previous studies. Instead of assigning equal weight to all data points 

when training each LN, we use the probabilistic concept of cluster membership to get individual 

weights for each training point with respect to each LN. This allows points within each cluster to 

be given a higher weight than ones outside the cluster. The local loss utilizes these weights to 

calculate the final loss function. The final classification loss is a weighted cross entropy (CE) loss: 

𝐿𝑠 = ∑ ∑ 𝑞𝑝,𝑗𝐶𝐸(𝑦𝑝, ℎ𝑗(𝑥𝑝; 𝑉𝑗))

𝑝∈𝐶𝑗

𝑘

𝑗=1

 (6) 
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The LNs are trained in this manner for 𝑇𝑖𝑡𝑒𝑟 − 1 sub-iterations only, without error backpropagation 

to the encoder. Individual errors from all 𝑘 LNs are gathered only at the last (𝑇𝑖𝑡𝑒𝑟
𝑡ℎ )) iteration and 

backpropagated to the encoder to change the cluster representations accordingly. After training, 

the encoder network is frozen, and the local networks are finetuned on the latent embeddings using 

the cluster-weighted classification loss outlined. The entire training procedure is summarized in 

Algorithm 1. 

Once trained, the encoder and local networks can be used to make predictions. For a test point 𝑥^, 

the soft cluster probabilities (𝑞^) are calculated from Eq. 3 using the cluster centroids (learnt after 

training) and embedding of the test point (from the encoder). All the local networks collectively 

predict the class label using the cluster membership probabilities as: 𝑦𝑝
^ = ∑ 𝑞𝑝,𝑗  ℎ𝑗(𝑥𝑝)𝑘

𝑗=1 . 

Experimental Evaluation 

Data 

For our experiments, we use de-identified real patient data from Electronic Medical Records of 

publicly available ICU databases. For sepsis prediction, we use the dataset from Reyna et al. (2020) 

of 40,366 patients collected from 2 hospitals in USA: Beth Israel Deaconess Medical Center and 

Emory University Hospital. For ARDS prediction, we use the MIMIC III dataset (Johnson et al. 

2016) comprising 33,798 unique patients. Patients with sepsis and ARDS in the data are identified 

using standard clinical definitions of these illnesses - Sepsis-3 criteria (Seymour et al. 2016) for 

sepsis and the Berlin criteria (Ferguson et al. 2012) for ARDS. Based on these definitions, hourly 
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binary labels indicating the presence or absence of the conditions are defined for individual 

patients. 

 

Prediction Setting 

We use the first 24 hours of data (i.e. set T = 24) to predict risk for patients (of each condition, 

separately) in the remaining ICU stay. Subtypes are obtained by clustering the data. Risk prediction 
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is formulated as a binary classification problem. All patients whose ICU stay is < 24 hours, and 

those who develop the condition within 24 hours of their ICU stay, are excluded.  

Features 

In both the datasets, every patient has one record per hour, each record comprising multiple 

features. For the sepsis dataset, we use all the variables mentioned in Reyna et al. (2020) along 

with SOFA scores (Vincent et al. 1996). For the ARDS dataset, we include the variables used in 

previous studies Yang et al. (2017), Zhang (2018) and Dimitrova et al. (2017).  Standard 

preprocessing steps like feature normalization are undertaken to obtain feature vectors for each 

patient. Categorical variables are converted to binary using one-hot encoding. We perform forward 

imputation to handle missing values. 

Evaluation Details 

For both Sepsis and ARDS, the entire dataset is divided into train-validation-test splits in the ratio 

72:13:15 (Test data is 15% of the entire dataset and the validation dataset is 15% of the remaining 

data). All experiments are conducted on three such random splits, and the average results on the 

held-out test sets are presented. To assess performance on the risk prediction task, the following 

binary classification metrics are used: (i) Area under the ROC Curve (AUC) and (ii) Area under 

the Precision Recall Curve (AUPRC). Clustering performance is measured using the Silhouette 

Score (SIL). We compare Multinet's risk prediction performance with two state-of-the-art 

methods, DICE and GRASP. We report the results for k = 2,3,4. In our experiments, we set 𝛿 =

0.1, 𝛽 = 2 and 𝛾 = 10. These were obtained after evaluating the performance of Multinet on a 

range of values on the validation sets.  
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Results 

The performance of Multinet, DICE and GRASP is shown in Table 1. The performance of DICE 

and GRASP is inferior to that of Multinet for all values of 𝑘 tested. In both Sepsis and ARDS, the 

margin of improvement is greater for AUPRC, which is regarded a superior metric in cases of class 

imbalance since AUPRC correlates better with positive predictive value and better represents 

feature discrimination (Ozenne et al. 2015). In contrast to Multinet, the performance of these 

baselines decreases as the number of clusters increases. 

   AUPRC   AUC   SIL  

Dataset k DICE GRASP Multinet DICE GRASP Multinet DICE GRASP Multinet 

ARDS 2 0.096 0.498 0.784 0.52 0.493 0.902 0.36 0.383 0.623 

ARDS 3 0.118 0.506 0.78 0.588 0.519 0.908 0.279 0.291 0.497 

ARDS 4 0.098 0.5 0.764 0.535 0.505 0.901 0.098 0.261 0.385 

           

Sepsis 2 0.091 0.501 0.693 0.542 0.491 0.808 0.467 0.542 0.829 

Sepsis 3 0.088 0.507 0.742 0.469 0.528 0.808 0.42 0.394 0.446 

Sepsis 4 0.093 0.495 0.747 0.478 0.465 0.824 0.309 0.28 0.311 

 

Conclusion 

Our work contributes to the growing literature on predictive analytics in healthcare information 

systems. Recent works in healthcare IS include risk models for readmission in patients with 

congestive heart failure (Bardhan et al. 2015) and with chronic diseases (Ben-Assuli and Padman 

2020). Unlike these works, our goal is to effectively utilize heterogeneity, manifested as subtypes, 

for risk modeling; and we use a different, neural network based approach. 
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Our main contribution is a new model called Multinet to address the modeling limitations of 

existing methods for combined risk modeling and subtyping. The deep learning architecture of 

Multinet is simple, powerful, and extensible. Multinet discovers subpopulations in data at the same 

time, trains numerous local expert networks on them, and then combines the experts to create the 

final prediction. Multinet clusters patients directly using input clinical data while also utilizing 

signals from the predictive performance of local expert models. This enables Multinet to obtain 

latent patient representations with meaningful cluster structures and yield improved risk 

prediction. Our empirical results demonstrate the superiority of Multinet over state-of-the-art 

methods for predicting risk of Sepsis and ARDS in Intensive Care Units. 

This work can be extended in many ways. In its current implementation, Multinet can model 

sequential data and make a single risk prediction for every patient. Future work can explore ways 

to make predictions at an hourly level. This would require separate mechanisms to handle time 

evolving clusters in the embedded data space. Multinet can also be extended to handle multiple 

modalities like text and images which are present in Electronic Medical Records. Methods to 

provide interpretability to the end user can also be explored. 
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