
MEMSTREAM: Memory-Based Anomaly Detection in
Multi-Aspect Streams with Concept Drift

Siddharth Bhatia
National University of Singapore
siddharth@comp.nus.edu.sg

Arjit Jain
IIT Bombay

arjit@cse.iitb.ac.in

Shivin Srivastava
National University of Singapore
shivin@comp.nus.edu.sg

Kenji Kawaguchi
Harvard University
kawaguch@mit.edu

Bryan Hooi
National University of Singapore

bhooi@comp.nus.edu.sg

Abstract

Given a stream of entries over time in a multi-aspect data setting where concept
drift is present, how can we detect anomalous activities? Most of the existing
unsupervised anomaly detection approaches seek to detect anomalous events in an
offline fashion and require a large amount of data for training. This is not practical
in real-life scenarios where we receive the data in a streaming manner and do not
know the size of the stream beforehand. Thus, we need a data-efficient method
that can detect and adapt to changing data trends, or concept drift, in an online
manner. In this work, we propose MEMSTREAM, a streaming multi-aspect anomaly
detection framework, allowing us to detect unusual events as they occur while
being resilient to concept drift. We leverage the power of a denoising autoencoder
to learn representations and a memory module to learn the dynamically changing
trend in data without the need for labels. We prove the optimum memory size
required for effective drift handling. Furthermore, MEMSTREAM makes use of two
architecture design choices to be robust to memory poisoning. Experimental results
show the effectiveness of our approach compared to state-of-the-art streaming
baselines using 2 synthetic datasets and 11 real-world datasets.

1 Introduction

Anomaly detection is a fundamental and well-studied problem in many areas, such as cybersecurity
[1, 2], video surveillance [3, 4], financial fraud [5] and healthcare [6]. Traditional classifiers trained
in a supervised learning setting do not work well in anomaly detection because of the cold-start
problem, i.e., the amount of anomalous data is usually not sufficient to train the model. Therefore,
anomaly detectors are trained in an unsupervised setting where the normal data distribution is learned
and instances that appear unlikely under this distribution are identified as anomalous.

Developing effective methods for handling multi-aspect data (i.e. data having multiple features or
dimensions, allowing both numerical and categorical data) still remains a challenge. This is especially
true in an unsupervised setting, where traditional anomaly detection algorithms, such as One-Class
SVM, tend to perform poorly because of the curse of dimensionality. Deep architectures such as
Autoencoders [7], because of their ability to learn multiple levels of representation, are able to achieve
better performance compared to their shallow counterparts [8]. For anomaly detection, existing
deep learning based techniques include deep belief networks [9], variational autoencoders [10, 11],
adversarial autoencoders [12–14], and deep one-class networks [15, 16].

The problem of anomaly detection becomes even more challenging when the data arrives in a
streaming/online manner and we want to detect anomalies in real-time. For example, intrusions in
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cybersecurity need to be detected as soon as they arrive to minimize the harm caused. Moreover,
in streaming data, there can be a drift in the distribution over time which the existing approaches
[17–22] are unable to fully handle.

To handle concept drift in a streaming setting, our approach uses an explicit memory module. For
anomaly detection, this memory can be used to store the trends of normal data that act as a baseline
with which to judge incoming records. A read-only memory, in a drifting setting, is of limited use
and thus should be accompanied by an appropriate memory update strategy. The records arrive over
time; thus, older records in the memory might no longer be relevant to the current trends suggesting a
First-In-First-Out memory replacement strategy. The introduction of memory, with an appropriate
update strategy, seems to tackle some of the issues in streaming anomaly detection with concept drift.
However, the system described so far does not provide a fail-safe for when an anomalous sample
enters the memory and is thus susceptible to memory poisoning.

We, therefore, propose MEMSTREAM, which uses a denoising autoencoder [23] to extract
features, and a memory module to learn the dynamically changing trend, thereby avoiding the
over-generalization of autoencoders (i.e. the problem of autoencoders reconstructing anomalous
samples well). Our streaming framework is resilient to concept drift and we prove a theoretical bound
on the size of memory for effective drift handling. Moreover, we allow quick retraining when the
arriving stream becomes sufficiently different from the training data.

We also discuss two architectural design choices to make MEMSTREAM robust to memory
poisoning. The first modification prevents anomalous elements from entering the memory, and
the second modification deals with how the memory can be self-corrected and recovered even if it
harbors anomalous elements. Finally, we discuss the effectiveness of MEMSTREAM compared to
state-of-the-art streaming baselines.

In summary, the main contributions of our paper are:

1. Streaming Anomaly Detection: We propose a novel streaming approach using a denoising
autoencoder and a memory module, for detecting anomalies in multi-aspect data containing
both categorical and numeric attributes. MEMSTREAM is resilient to concept drift and
allows quick retraining.

2. Theoretical Guarantees: In Proposition 1, we discuss the optimum memory size for
effective concept drift handling. In Proposition 2, we discuss the motivation behind our
architecture design.

3. Robustness to Memory Poisoning: MEMSTREAM prevents anomalies from entering the
memory and can self-correct and recover from bad memory states.

4. Effectiveness: Our experimental results show that MEMSTREAM convincingly outperforms
11 state-of-the-art baselines using 2 synthetic datasets (that we release as open-source) and
11 popular real-world datasets.

Reproducibility: Our code and datasets are available at https://github.com/Stream-AD/MemStream.

2 Related Work

[24] surveys traditional anomaly detection methods including reconstruction-based approaches
[25–31], clustering-based [32–36], one class classification-based [37–39]. Several deep learning
based methods have also been proposed for anomaly detection such as GAN-based approaches
[6, 40–45], Energy-based [14, 46], Autoencoder-based [10, 11, 47–51], and RNN-based [52]; see
[53, 54] for extensive surveys. However, deep learning based approaches do not process the data in a
streaming manner and typically require a large amount of training data in an offline manner, whereas
we process the data in an online manner. Anomaly detection is a vast topic by itself and cannot be
fully covered in this manuscript; in this section, our review mainly focuses on methods that can detect
anomalies in multi-aspect streams containing concept drift; see [55, 56] for concept drift literature.

Isolation Forest (IF) [57] constructs trees by randomly selecting features and splitting them at random
split points, and then defines anomalies as points that are separated from the rest of the data at low
depth values. HS-Tree [58] uses an ensemble of randomly constructed half-space trees with a sliding
window to detect anomalies in evolving streaming data. However, since it computes an anomaly score
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by traversing a tree structure that is bounded by the maximum depth parameter and the size of the
sliding window, it does not capture long-range dependence. iForestASD [59] uses a sliding window
frame scheme to handle abnormal data. Random Cut Forest (RCF) [22] tries to further improve upon
IF by creating multiple random cuts (trees) of data and constructing a forest of such trees to determine
whether a point is anomalous or not. Recently, [17] shows that splitting by only one variable at a time
introduces some biases in IF which can be overcome by using hyperplane cuts instead. They propose
Extended Isolation Forest (Ex. IF) [17] where the split criterion is based on a threshold set on a linear
combination of randomly chosen variables instead of a threshold on a single variables value at a time.

As for density-based approaches, Local Outlier Factor (LOF) [60] estimates the local density at each
point, then identifies anomalies as points with much lower local density than their neighbors. DILOF
[20] improves upon LOF and LOF variants [61, 62] by adopting a novel density-based sampling
scheme to summarize the data, without prior assumptions on the data distribution.

Other streaming approaches include STORM [63], which uses a sliding window to detect global
distance-based outliers in data streams with respect to the current window. RS-Hash [64] uses
subspace grids and randomized hashing in an ensemble to detect anomalies. For each model in the
ensemble, a grid is constructed using subsets of features and data, random hashing is used to record
data counts in grid cells, and the anomaly score of a data point is the log of the frequency in its hashed
bins. LODA [65] generates several weak anomaly detectors by producing many random projections
of the data and then computing a density estimation histogram for each projection. The outlier
scores produced are the mean negative log-likelihood according to each histogram for each point.
XSTREAM [19] detects anomalies in feature-evolving data streams through the use of a streaming
random projection scheme and ensemble of half-space chains. MSTREAM [18] performs feature
extraction and then detects group anomalies in multi-aspect streams. Kitsune [21] is an ensemble of
light-weight autoencoders for real-time anomaly detection.

3 Problem

Let X = {x1, x2, · · · } be records arriving in a streaming manner. Each entry xi = (xi1, · · · , xid)
consisting of d attributes or dimensions, can be multi-aspect in nature i.e. each dimension can either
be categorical (e.g. IP address) or real-valued (e.g. average packet length).

Our goal is to detect anomalies in multi-aspect streaming data. A common phenomenon in real-world
data is that the nature of the stream changes over time. These changes are generally described in
terms of the statistical properties of the stream, such as the mean changes across some or all features.
As the definition of the “concept" of normal behavior changes, so does the definition of an anomaly.
Thus, we need a model that is able to adapt to the dynamic trend and thereby recognize anomalous
records.

4 Algorithm

4.1 Motivation

Table 1: Simple toy example, consisting of a stream of multi-aspect records over time with a trend
shift at t = 6.

Time Feature 1 Feature 2 Feature 3 ...

1 8.39 1.44 4.16 · · ·
2 6.72 4.55 3.49 · · ·
3 3.49 2.10 1.56 · · ·
4 4.28 0.64 1.22 · · ·
5 5.54 2.40 6.55 · · ·
6 183.75 132.03 9.86 · · ·
7 146.47 128.49 16.52 · · ·
8 197.96 97.16 15.05 · · ·
9 192.50 89.95 12.46 · · ·

10 158.32 10.37 15.76 · · ·

3
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Figure 1: After an initial training of the feature extractor on a small subset of normal data,
MEMSTREAM processes records in two steps: (i) It outputs Anomaly scores for each record by
querying the memory for K-nearest neighbours to the record encoding and calculating a discounted
distance and (ii) It updates the memory, in a FIFO manner, if the anomaly score is within an update
threshold β.

Consider an attacker who hacks a particular IP address and uses it to launch denial of service attacks
on a server. Modern cybersecurity systems are trained to detect and block such attacks, but the
attacker tries to evade the system by routinely changing the identification of the attacking machine.
This is a “concept" drift and the security system must learn to identify such changing trends to
mitigate the attacks. Consider the toy example in Table 1, comprising of a multi-aspect temporal data
stream. There is a sudden distribution change and concept drift in all attributes from time t = 5 to
t = 6.

The main challenge for the algorithm is to detect these types of patterns in a streaming manner within
a suitable timeframe. That is, the algorithm should not give an impulsive reaction to a short-lived
change in the base distribution, but also should not take too long to adapt to the dynamic trend. Note
that we do not want to set any limits a priori on the duration of the anomalous activity we want to
detect, or the window size after which the model should be updated to account for the concept drift.

4.2 Overview

As shown in Figure 1, the proposed MEMSTREAM algorithm addresses these problems through the
use of a memory augmented feature extractor that is initially trained on a small subset of unlabelled
normal data. The memory acts as a reserve of encodings of normal data. At a high level, the role of
the feature extractor is to capture the structure of normal data. An incoming record is then scored by
calculating the discounted score based on the similarity of its encoding as evaluated against those in
memory. Based on this score, if the record is deemed normal, then it is used to update the memory.
To adapt to the changing data trend, memory is required to keep track of the data drift from the
original distribution. Since concept drift is generally a gradual process, the memory should maintain
the temporal contiguity of records. This is achieved by following a First-In-First-Out (FIFO) memory
replacement policy.

4.3 Feature Extraction

Neural Networks can learn representations using an autoencoder consisting of two parts - an encoder
and a decoder [66]. The encoder forms an intermediate representation of the input samples and the
decoder is trained to reconstruct the input samples from their intermediate representations. Denoising
autoencoders [23] partially corrupt the input data before passing it through the encoder. Intuitively,
this “forces" the network to capture the useful structure in the input distribution, pushing it to learn
more robust features of the input. In our implementation, we use an additive isotropic Gaussian noise
model.

MEMSTREAM allows flexibility in the choice of the feature extraction backbone. We consider
Principal Component Analysis (PCA) and Information Bottleneck (IB) [67, 68] as alternatives to
autoencoders for feature extraction [18]. PCA-based methods are effective for off-the-shelf learning,
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with little to no hyperparameter tuning. Information Bottleneck can be used for learning useful
features by posing the following optimization problem:

min
p(t|x)

I(X;T )− βI(T ;Y )

where X , Y , and T are random variables. T is the compressed representation of X , I(X;T ) and
I(T ;Y ) are the mutual information of X and T , and of T and Y , respectively, and β is a Lagrange
multiplier. The problem configuration and the available data greatly influence the choice of the
feature extraction algorithm. We evaluate the methods to extract features in Section 5.5.

4.4 Memory

Memory-based Representation: The memory M is a collection of N real-valued D dimensional
vectors whereD is the dimension of the encodings z. Given a representation z, the memory is queried
to retrieve the K-nearest neighbours {ẑt1, ẑt2...ẑtK} of z in M under the `1 norm such that:

||ẑt1 − z||1 ≤ ... ≤ ||ẑtK − z||1
The hyper-parameter N denotes the memory size. Performance of the algorithm varies depending on
the value of N ; very large or small values of N would hinder the performance.

Memory Update: Fixed memory trained on limited samples of streaming data will not be able
to handle concept drift; therefore, continuous memory update is necessary. Different memory
update strategies can be used such as Least Recently Used (LRU), Random Replacement (RR),
and First-In-First-Out (FIFO). We observe that the FIFO memory update policy wherein the new
element to be added replaces the earliest added element in the memory works well in practice. It can
easily handle concept drift in streaming data as the memory retains the most recent non-anomalous
samples from the distribution. We compare FIFO with LRU and RR strategies in more detail in
Section 5.5. It is also interesting to note that MEMSTREAM can easily handle periodic patterns by
adjusting the memory size: a memory of size greater than the product of the period and the sampling
frequency should be sufficient to avoid flagging periodic changes as anomalies. Section 5.2 evaluates
MEMSTREAM’s ability to detect anomalies in a periodic setting.

As shown in Algorithm 1, the autoencoder is initially trained with a small amount of data D to
learn how to generate data embeddings (line 2). The memory is initialized with the same training
dataset (line 3). We also store the mean and standard deviation of this small training dataset. As new
records arrive, the encoder performs normalization using the stored mean and standard deviation
and computes the compressed representation zt (line 6). It then computes the K-nearest neighbours
(ẑt1, · · · , ẑtK ) by querying the memory (line 8), and calculates their `1 distance with zt (line 10). The
final discounted score is calculated as an exponentially weighted average (weighting factor γ) (line
12). This helps in making the autoencoder more robust. The discounted score is then compared
against a user-defined threshold β (line 14) and the new record is updated into the memory in a FIFO
manner if the score falls within β (line 15). This step ensures that anomalous records do not enter the
memory. If the memory is updated, then the stored mean and standard deviation are also updated
accordingly. The discounted score is returned as the anomaly score for the record xt (line 17).

4.5 Theoretical Analysis

4.5.1 Relation between Memory Size and Concept Drift

Our analysis on the relation of the memory size and concept drifts suggests that the memory size
should be proportional to (the spread of data distributions) / (the speed of concept drifts).

As we increase the size of memory, we can decrease the possibility of a false positive (falsely
classifying a normal sample as an anomaly). This is because it is more likely for a new data point
to have a close point in a larger memory. Therefore, on the one hand, in order to decrease the false
positive rate, we want to increase the memory size. On the other hand, in order to minimize a false
negative rate (i.e., failing to raise an alarm when an anomaly did happen), Proposition 1 suggests
that the memory size should be smaller than some quantity proportional to (standard deviations of
distributions) / (the speed of distributional drifts). That is, it suggests that the memory size should be
smaller than 2σ

√
d(1 + ε)/α, where d is the input dimension, α measures the speed of distributional
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Algorithm 1: MEMSTREAM

Input: Stream of data records
Output: Anomaly scores for each record

1 . Initialization
2 Feature Extractor, fθ, trained using small subset of data D
3 Memory, M , initialized as fθ(D)
4 while new sample xt is received: do
5 . Extract features:
6 zt = fθ(x

t)
7 . Query memory:
8 {ẑt1, ẑt2...ẑtK} = K-nearest neighbours of zt in M
9 . Calculate distance:

10 R(zt, ẑti) = ||zt − ẑti ||1 for all i ∈ 1..K
11 . Assign discounted score:

12 Score(zt) =

∑K
i=1 γ

iR(zt, ẑti)∑K
i=1 γ

i

13 . Update Memory:
14 if Score(zt) < β then
15 Replace earliest added element in M with zt

16 . Anomaly Score:
17 output Score(zt)

drifts, σ is the standard deviation of distributions, and ε ∈ (0, 1). More concretely, under drifting
normal distributions, the proposition shows that a new distribution after τ drifts and an original
distribution before the τ drifts are sufficiently dissimilar whenever τ > 2σ

√
d(1 + ε)/α, so that

the memory should forget about the original distribution to minimize a false-negative rate. We also
discuss this effect of increasing the memory size in Section 5.5.

Proposition 1. (Proof in Appendix D) Define St,ε = {x ∈ Rd : ‖x − µt‖2 ≤ σ
√
d(1 + ε)}. Let

(µt)t be the sequence such that there exits a positive real number α for which ‖µt−µt′‖2 ≥ (t′− t)α
for any t < t′. Let τ > 2σ

√
d(1+ε)

α and xt ∼ N (µt, σI) for all t ∈ N+. Then, for any ε > 0 and
t ∈ N+, with probability at least 1− 2 exp(−dε2/8), the following holds: xt ∈ St,ε and xt+τ /∈ St,ε.

4.5.2 Architecture Choice

In the following, we provide one reason why we use an architecture with d ≤ D, where d is the input
dimension and D is the embedding dimension. Namely, Proposition (2) shows that if d > D, then
there exists an anomaly constructed through perturbation of a normal sample such that the anomaly is
not detectable. The construction of an anomaly in the proof is indeed unique to the case of d > D,
and is not applicable to the case of d ≤ D. This provides the motivation of why we may want to use
the architecture of d ≤ D, to avoid such an undetectable anomaly.

Let θ be fixed. Let fθ be a deep neural network fθ : Rd → RD with ReLU and/or max-pooling
as: fθ(x) = σ[L]

(
z[L](x, θ)

)
, z[l](x, θ) = W [l]σ(l−1) (z[l−1](x, θ)), for l = 1, 2, . . . , L, where

σ(0)
(
z[0](x, θ)

)
= x, σ represents nonlinear function due to ReLU and/or max-pooling, and W [l] ∈

RNl×Nl−1 is a matrix of weight parameters connecting the (l − 1)-th layer to the l-th layer. For the
nonlinear function σ due to ReLU and/or max-pooling, we can define σ̇[l](x, θ) such that σ̇[l](x, θ)
is a diagonal matrix with each element being 0 or 1, and σ[l]

(
z[l](x, θ)

)
= σ̇[l](x, θ)z[l](x, θ).

For any differentiable point x of fθ, define Ω(x) = {x′ ∈ Rd : ∀l, σ̇[l](x′, θ) = σ̇[l](x, θ)} and
Br(x) = {x′ ∈ Rd : ‖x− x′‖2 ≤ r}.
Proposition 2. (Proof in Appendix D) Let x be a differentiable point of fθ such that Br(x) ⊆ Ω(x)
for some r > 0. If d > D, then there exists a δ ∈ Rd such that for any x̂ ∈ Rd and β̄ > 0, the
following holds: ‖δ‖2 = r and

R(x, x̂) < β̄ =⇒ R(x+ δ, x̂) < β̄.
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5 Experiments

In this section, we aim to answer the following questions:

Q1. Comparison to Streaming Methods: How accurately does MEMSTREAM detect
real-world anomalies as compared to state-of-the-art streaming baseline methods?

Q2. Concept Drift: How fast can MEMSTREAM adapt under concept drift?
Q3. Retraining: What effect does retraining MEMSTREAM have on the accuracy and time?
Q4. Self-Correction and Recovery: Does MEMSTREAM provide a self-correction mechanism

to recover from “bad" memory states?

Datasets: KDDCUP99 [69] is a popular multi-aspect anomaly detection dataset. NSL-KDD [70]
solves some of the inherent problems of KDDCUP99 such as redundant and duplicate records.
Recently, [71] recommends to use UNSW-NB15 [72] and CICIDS-DoS [73] after surveying more than
30 datasets. We also create and use a synthetic dataset, Syn with 10% anomalies. Apart from these,
we use seven standard ODDS [74] datasets: Ionosphere, Cardio, Satellite, Satimage-2, Mammograph,
Pima, and ForestCover. Datasets are discussed in detail in Appendix A.

Experimental Setup Architecture details and hyperparameters used can be found in Appendix
C. All methods output an anomaly score for every record (higher is more anomalous). We report
the ROC-AUC (Area under the Receiver Operating Characteristic curve). All experiments, unless
explicitly specified, are performed 5 times for each parameter group, and the mean values are reported.

5.1 Comparison to Streaming Methods

Table 2 shows the AUC of MEMSTREAM and state-of-the-art streaming baselines. We use
open-sourced implementations of DILOF [20], XSTREAM [19], MSTREAM [18], Extended Isolation
Forest (Ex. IF) [17], provided by the authors, following parameter settings as suggested in the original
papers. For STORM [63], HS-Tree [58], iForestASD [59], RS-Hash [64], Random Cut Forest
(RCF) [22], LODA [65], Kitsune [21], we use the open-source library PySAD [75] implementation,
following original parameters. Baseline parameters are listed in Appendix E, and AUC-PR and
running time in Appendix B.2. LODA could not process the large UNSW dataset. Ex. IF and Kitsune
are unable to run on datasets with just one field, therefore their results with Syn are not reported.

Table 2: AUC of MEMSTREAM and Streaming Baselines. Averaged over 5 runs.

Method KDD99 NSL UNSW DoS Syn. Ion. Cardio Sat. Sat.-2 Mamm. Pima Cover

STORM (CIKM’07) 0.914 0.504 0.810 0.511 0.910 0.637 0.507 0.662 0.514 0.650 0.528 0.778
HS-Tree (IJCAI’11) 0.912 0.845 0.769 0.707 0.800 0.764 0.673 0.519 0.929 0.832 0.667 0.731
iForestASD (ICONS’13) 0.575 0.500 0.557 0.529 0.501 0.694 0.515 0.504 0.554 0.574 0.525 0.603
RS-Hash (ICDM’16) 0.859 0.701 0.778 0.527 0.921 0.772 0.532 0.675 0.685 0.773 0.562 0.640
RCF (ICML’16) 0.791 0.745 0.512 0.514 0.774 0.675 0.617 0.552 0.738 0.755 0.571 0.586
LODA (ML’16) 0.500 0.500 −−− 0.500 0.506 0.503 0.501 0.500 0.500 0.500 0.502 0.500
Kitsune (NDSS’18) 0.525 0.659 0.794 0.907 −−− 0.514 0.966 0.665 0.973 0.592 0.511 0.888
DILOF (KDD’18) 0.535 0.821 0.737 0.613 0.703 0.928 0.570 0.561 0.563 0.733 0.543 0.688
XSTREAM (KDD’18) 0.957 0.552 0.804 0.800 0.539 0.847 0.918 0.677 0.996 0.856 0.663 0.894
MSTREAM (WWW’21) 0.844 0.544 0.860 0.930 0.505 0.670 0.986 0.563 0.958 0.567 0.529 0.874
Ex. IF (TKDE’21) 0.874 0.767 0.541 0.734 −−− 0.872 0.921 0.716 0.995 0.867 0.672 0.902
MEMSTREAM 0.980 0.978 0.972 0.938 0.955 0.821 0.884 0.727 0.991 0.894 0.742 0.952

Random subspace generation in RS-Hash includes many irrelevant features into subspaces while
omitting relevant features in high-dimensional data. The objective of random projection in LODA
retains the pairwise distances of the original space, therefore it fails to provide accurate outlier
estimation. XSTREAM performs well in KDD99, MSTREAM performs well in DoS, however, note
that MEMSTREAM achieves statistically significant improvements in AUC scores over baseline
methods. Moreover, baselines are unable to catch complicated drift scenarios in NSL, UNSW and
Syn.

5.2 Concept Drift

We next investigate MEMSTREAM’s performance under concept drift, particularly how fast it can
adapt. As shown in Figure 2 (top), we create a synthetic data set which covers a wide variety of
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drifts scenarios: (a) point anomalies: T = 19000 (b) sudden frequency change: T ∈ [5000, 10000]
(c) continuous concept drift: T ∈ [15000, 17500] (d) sudden concept drift due to mean change:
T ∈ [12500, 15000]. Anomaly scores are clipped at T = 12500 and T = 19000 for better visibility.

MEMSTREAM is able to handle all the above-mentioned concept drift scenarios as is evident in Figure
2 (bottom). We observe that MEMSTREAM assigns high scores corresponding to trend-changing
events (e.g. T = 1000, 5000, 10000 etc.) which produce anomalies, then with a gradual decrease in
scores thereafter as it adapts successfully to the new distribution. Note that MEMSTREAM can also
adapt to periodic streams. For the first cycle of the sine wave T ∈ [1000, 2000], the anomalous scores
are relatively high. However, as more and more normal samples are seen from the sine distribution,
MEMSTREAM adapts to it.

Figure 2: (Top): Synthetic data with drift. (Bottom): Anomaly Scores output by MEMSTREAM
demonstrating resilience to drift.

5.3 Retraining

The need for re-training is especially prevalent in very long multi-aspect drifting streams where the
feature extractor, trained on the small subset of the initial normal data D, starts facing record data
sufficiently different from its training data. In this experiment, we test the ability of MEMSTREAM to
accommodate this more challenging setting by periodically retraining its feature extractor. Fine-tuning
is performed at regular intervals distributed uniformly across the stream, i.e. to implement k
fine-tunings on a stream of size S, the first fine-tuning occurs at b S

k+1c. Figure 3 shows the AUC and
time taken to fine-tune MEMSTREAM on CICIDS-DoS with a stream size greater than 1M records.
Note that as we increase the number of times MEMSTREAM is fine-tuned, we observe large gains in
AUC with the negligible time difference.
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Figure 3: Retraining effect on the AUC and time for CICIDS-DOS.
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5.4 Self-Correction and Recovery

Consider the scenario where an anomalous element enters into the memory. A particularly catastrophic
outcome of this event could be the cascading effect where more and more anomalous samples replace
the normal elements in the memory due to their similarity. This can ultimately lead to a situation
where the memory solely consists of anomalous samples. These “Group Anomaly" events are fairly
common in intrusion detection settings. We show that this issue is mitigated by the use of K-nearest
neighbours in our approach. We simulate the above setting by adding the first labeled anomalous
element in memory during the initialization.

In Table 3, a high β allows anomalous elements to also enter the memory. In the absence ofK-nearest
neighbour discounting (i.e. γ = 0), a high β value algorithm succumbs to the above-described
scenario resulting in poor performance. On the other hand, with discounting (i.e. γ 6= 0), the
algorithm is able to “recover" itself, and as a result, the performance does not suffer considerably.
Note that when the threshold β is in its appropriate range, the algorithm is robust to the choice of
discount factor γ.

Table 3: Performance of MEMSTREAM on NSL-KDD dataset after adding an anomalous element in
memory when K = 3 and for different values of discount factor γ.

γ High β(= 1) Appropriate β(= 0.001)

0 0.771 0.933
0.25 0.828 0.966
0.5 0.848 0.967
1 0.888 0.965

5.5 Ablations

Table 4: Ablation study for different components of MEMSTREAM on KDDCUP99.
Component Ablations
(a). Memory Update None LRU RR FIFO

0.938 0.946 0.946 0.980

(b). Feature Extraction Random Identity PCA IB AE
0.800 0.822 0.863 0.959 0.980

(c). Memory Length (N ) 128 256 512 1024 2048
0.950 0.980 0.946 0.811 0.879

(d). Output Dimension (D) d/2 d 2d 5d
0.951 0.928 0.980 0.983

(e). Update Threshold (β) 1 0.1 0.01 0.001 0.0001
0.980 0.938 0.938 0.938 0.938

(f). KNN coefficient (γ) 0 0.25 0.5 0.75 1
0.980 0.939 0.937 0.936 0.936

(a) Memory Update: Taking inspiration from the work done in cache replacement policies in
computer architecture, we replace the FIFO memory update policy with Least Recently Used (LRU)
and Random Replacement (RR) policies. Table 4(a) reports results with these three and when no
memory update is performed on the KDDCUP99 dataset. Note that FIFO outperforms other policies.
This is due to the temporal locality preserving property of the FIFO policy to keep track of the current
trend. LRU and RR policies do not maintain a true snapshot of the stream in the memory and are thus
unable to learn the changing trend.

(b) Feature Extraction: Table 4(b) shows experiments with different methods for feature extraction
discussed in Section 4.3. Autoencoder outperforms both PCA and Information Bottleneck approaches.
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(c) Memory Length (N ): As we noted in Section 4.5.1, increasing N can decrease the false positive
rate, but also increase the false negative rate. We observe this effect empirically in Table 4(c), where
the sweet spot is found at N = 256, and increasing memory length further degrades performance.
An additional experiment demonstrating the effect of memory size is discussed in Appendix B.1.

(d) Output Dimension (D): In Section 4.5.2, we motivate why we use an architecture with D >= d.
In Table 4(d), we compare architectures with different output dimension D as a function of the input
dimension d. We find that D = d/2 outperforms an architecture with D = d, owing to the features
learning by dimensionality reduction. Note that MEMSTREAM performs well for large D.

(e) Update Threshold (β): The update threshold is used to judge records based on their anomaly
scores and determine whether they should update the memory. A high β corresponds to frequent
updates to the memory, whereas a low β seldom allows memory updates. Thus, β can capture our
belief about how frequently the memory should be updated, or how close is the stream to the initial
data distribution. From Table 4(e), we notice that for KDDCUP99, a drifting dataset, a more flexible
threshold (β = 1) performs well, and more stringent thresholds perform similar to no memory
updates (Table 4(a)).

(f) KNN coefficient (γ): In Section 5.4, we discussed the importance of the KNN coefficient γ in the
Self-Recovery Mechanism. Table 4(f) compares different settings of γ, without memory poisoning.

6 Conclusion

We propose MEMSTREAM, a novel memory augmented feature extractor framework for streaming
anomaly detection in multi-aspect data and concept drift settings. MEMSTREAM uses a denoising
autoencoder to extract features and a memory module with a FIFO replacement policy to learn the
dynamically changing trends. Moreover, MEMSTREAM allows quick retraining when the arriving
stream becomes sufficiently different from the training data. We give a theoretical guarantee on
the relation between the memory size and the concept drift. Furthermore, MEMSTREAM prevents
memory poisoning by using (1) a discounting K-nearest neighbour memory leading to a unique
self-correcting and recovering mechanism; (2) a theoretically motivated architecture design choice.
MEMSTREAM outperforms 11 state-of-the-art streaming methods. Future work could consider more
tailored memory replacement policies, e.g. by assigning different weights to the memory elements.
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Appendix

A Datasets

Table 5 contains the datasets that we use for evaluation. We briefly describe how these datasets are
prepared for anomaly detection.

Table 5: Statistics of the datasets.
KDD99 NSL UNSW DoS Syn. Ion. Cardio Sat. Sat.-2 Mamm. Pima Cover

Records 494, 021 125, 973 2, 540, 044 1, 048, 575 10, 000 351 1831 6435 5803 11183 768 286048
Dimensions 121 126 122 95 1 33 21 36 36 6 8 10
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1. KDDCUP99 [69] is based on the DARPA data set and is amongst the most extensively used
data sets for multi-aspect anomaly detection. The original dataset contains samples of 41
dimensions, 34 of which are continuous and 7 are categorical, and also displays concept
drift [76]. We use one-hot representation to encode the categorical features, and eventually,
we obtain a dataset of 121 dimensions. For the KDDCUP99 dataset, we follow the settings
in [49]. As 20% of data samples are labeled as “normal" and 80% are labeled as “attack",
normal samples are in a minority group; therefore, we treat normal ones as anomalous in
this experiment and the 80% samples labeled as attack in the original dataset are treated as
normal samples.

2. NSL-KDD [70] solves some of the inherent problems of the KDDCUP99 dataset such
as redundant and duplicate records and is considered more enhanced as compared to
KDDCUP99.

3. CICIDS-DoS [73] was created by the Canadian Institute of Cybersecurity. Each record is a
flow containing features such as Source IP Address, Source Port, Destination IP Address,
Bytes, Packets. These flows were captured from a real-time simulation of normal network
traffic and synthetic attack simulators. This consists of the CICIDS-DoS dataset (1.05
million records). CICIDS-DoS has 5% anomalies and contains samples of 95 dimensions
with a mixture of numeric and categorical features. For categorical features, we further used
binary encoding to represent them because of the high cardinality.

4. UNSW-NB15 [72] was created by the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) for generating a hybrid of real modern normal activities and synthetic
contemporary attack behaviors. This dataset has nine types of attacks, namely, Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. It
has 13% anomalies.

5. Synthetic Dataset: We create a synthetic dataset with T = 10000 samples. This dataset
is constructed as a superposition of a linear wave with slope 2 × 10−3, two sinusoidal
waves with time periods 0.2T and 0.3T and amplitudes 8 and 4, altogether with an additive
Gaussian noise from a standard normal distribution. 10% of the samples are chosen at
random and are perturbed with uniform random noise from the interval [3, 6] to simulate
anomalous data. Figure 4 shows a scatterplot of the synthetic data. Anomalous samples
constitute 10% of the data and are represented by red dots in the scatter plot.

Figure 4: Scatterplot of the Synthetic Dataset.

By construction, the synthetic data distribution changes significantly over time. The presence
of this concept drift makes the task challenging resulting in poor performance by baseline
approaches, as seen in the Experiments. However, MEMSTREAM, through the use of explicit
memory, can adapt to the drift in the distribution, proving its effectiveness in concept drift
settings.

6. Ionosphere [74] is derived using the ionosphere dataset from the UCI ML repository [77]
which is a binary classification dataset with dimensionality 34. There is one attribute having
values of all zeros, which is discarded. So the total number of dimensions is 33. The ‘bad’
class is considered as outliers class and the ‘good’ class as inliers.

7. Cardio [74] is derived using the Cardiotocography (Cardio) dataset from the UCI ML
repository [77] which consists of measurements of fetal heart rate (FHR) and uterine
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contraction (UC) features on cardiotocograms classified by expert obstetricians. This
is a classification dataset, where the classes are normal, suspect, and pathologic. For
outlier detection, the normal class formed the inliers, while the pathologic (outlier) class is
downsampled to 176 points. The suspect class is discarded.

8. Satellite [74] is derived using the Statlog (Landsat Satellite) dataset from the UCI ML
repository [77] which is a multi-class classification dataset. Here, the training and test data
are combined. The smallest three classes, i.e. 2, 4, 5 are combined to form the outliers class,
while all the other classes are combined to form an inlier class.

9. Satimage-2 [74] is derived using the Statlog (Landsat Satellite) dataset from the UCI ML
repository [77] which is also a multi-class classification dataset. Here, the training and test
data are combined. Class 2 is down-sampled to 71 outliers, while all the other classes are
combined to form an inlier class. The modified dataset is referred to as Satimage-2.

10. Mammography [74] is derived from openML1. The publicly available openML dataset has
11, 183 samples with 260 calcifications. If we look at predictive accuracy as a measure of
goodness of the classifier for this case, the default accuracy would be 97.68% when every
sample is labeled non-calcification. But, it is desirable for the classifier to predict most
of the calcifications correctly. For outlier detection, the minority class of calcification is
considered as the outlier class and the non-calcification class as inliers.

11. Pima [74] is the same as Pima Indians diabetes dataset of the UCI ML repository [77]
which is a binary classification dataset. Several constraints were placed on the selection of
instances from a larger database. In particular, all patients here are females at least 21 years
old of Pima Indian heritage.

12. ForestCover [74] is the ForestCover/Covertype dataset from the UCI ML repository [77]
which is a multiclass classification dataset. It is used in predicting forest cover type from
cartographic variables only (no remotely sensed data). This study area includes four
wilderness areas located in the Roosevelt National Forest of northern Colorado. This
dataset has 54 attributes (10 quantitative variables, 4 binary wilderness areas, and 40 binary
soil type variables). Here, an outlier detection dataset is created using only 10 quantitative
attributes. Instances from class 2 are considered as normal points and instances from class 4
are anomalies. The anomalies ratio is 0.9%. Instances from the other classes are omitted.

B Additional Experiments

B.1 Memory Size

In Table 6, we note that very large or very small values of N would hinder the algorithm performance
as the memory will not be able to capture the current trend properly. A very large ‘N’ will not
ensure that the current trend is learned exclusively and the memory would always be contaminated
by representatives of the previous trend. On the other hand, a very small ‘N’ will not allow enough
representatives from the current trend and thus in both cases, the performance of the algorithm will
be sub-optimal.

Table 6: Effect of Memory Size on the AUC in MEMSTREAM on NSL-KDD dataset.
Memory Size 24 25 26 27 28 29 210 211 212 213 214

AUC 0.670 0.649 0.932 0.936 0.923 0.950 0.972 0.976 0.985 0.989 0.991

B.2 AUC-PR and Running Times

Table 7 reports the running AUC-PR scores of MEMSTREAM and baseline methods on the NSL-KDD
dataset, as well as their corresponding running times. Note that not only does MEMSTREAM greatly
outperform baselines on AUC-PR, but also does so in a time-efficient manner.

1https://www.openml.org/
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Table 7: AUC-PR and Time required to run MEMSTREAM and Streaming Baselines on NSL-KDD.
MEMSTREAM provides statistically significant (p value < 0.001) improvements over baseline
methods.

Method AUC-PR Time
STORM 0.681± 0.000 754s
HS-Tree 0.709± 0.063 306s
iForestASD 0.534± 0.000 19876s
RS-Hash 0.500± 0.140 892s
RCF 0.664± 0.006 665s
LODA 0.734± 0.067 2617s
Kitsune 0.673± 0.000 821s
DILOF 0.822± 0.000 260s
XSTREAM 0.541± 0.070 34s
MSTREAM 0.510± 0.000 0.08s
Ex. IF 0.659± 0.014 889s
MEMSTREAM 0.959± 0.002 55s

C MEMSTREAM Implementation Details

All experiments are carried out on a 2.6GHz Intel Core i7 system with 16GB RAM and running
Mac OS Catalina 10.15.5.

Following MSTREAM, we take the output dimension as 8 for PCA and IB.

For MEMSTREAM-PCA, we use the open-source implementation available in the scikit-learn [78]
library of Principal Component Analysis.

For MEMSTREAM-IB, we used an online implementation 2 for the underlying Information Bottleneck
algorithm with β = 0.5 and the variance parameter set to 1. The network was implemented as a 2
layer binary classifier.

For MEMSTREAM, the encoder and decoder were implemented as single layer Neural Nets with
ReLU activation. We used Adam Optimizer to train both these networks with β1 = 0.9 and
β2 = 0.999. Grid Search was used for hyperparameter tuning: Learning Rate was set to 1e − 2,
and the number of epochs was set to 5000. The memory size N , and the value of the threshold
β, can be found in Table 8. Memory size for each intrusion detection dataset was searched in
{256, 512, 1024, 2048}. For multi-dimensional point datasets, if the size of the dataset was less
than 2000, N was searched in {4, 8, 16, 32, 64}, and if it was greater than 2000, then N was
searched in {128, 256, 512, 1024, 2048}. The threshold β, is an important parameter in our algorithm,
and hence we adopt a finer search strategy. For each dataset, and method, β was searched in
{10, 1, 0.1, 0.001, 0.0001}. Unless stated otherwise, AE was used for feature extraction with output
dimension D = 2d, and with a FIFO memory update policy. The KNN coefficient γ was set to 0 for
all experiments. For the synthetic dataset, we use a memory size of N = 16. For all methods, across
all datasets, the number of training samples used is equal to the memory size.

Table 8: Memory Length and Update Threshold used for the different datasets

Method KDD99 NSL UNSW DoS Syn. Ion. Cardio Sat. Sat.-2 Mamm. Pima Cover

N 256 2048 2048 2048 16 4 64 32 256 128 64 2048
β 1 0.1 0.1 0.1 1 0.001 1 0.01 10 0.1 0.001 0.0001

2https://github.com/burklight/nonlinear-IB-PyTorch
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D Proofs

Proposition 1. Define St,ε = {x ∈ Rd : ‖x − µt‖2 ≤ σ
√
d(1 + ε)}. Let (µt)t be the sequence

such that there exits a positive real number α for which ‖µt − µt′‖2 ≥ (t′ − t)α for any t < t′.

Let τ > 2σ
√
d(1+ε)

α and xt ∼ N (µt, σI) for all t ∈ N+. Then, for any ε > 0 and t ∈ N+, with
probability at least 1− 2 exp(−dε2/8), the following holds: xt ∈ St,ε and xt+τ /∈ St,ε.

Proof. Let us write d̄(x, x′) = ‖x− x′‖2. Then, by the triangle inequality,
d̄(µt, µt+τ ) ≤ d̄(µt, xt+τ ) + d̄(xt+τ , µt+τ ). (1)

By using the property of the Gaussian distribution with zt+τ ∼ N (0, I), we have that

Pr(‖xt+τ − µt+τ‖2 < σ
√
d(1 + ε)) = Pr(‖σzt+τ + µt+τ − µt+τ‖2 < σ

√
d(1 + ε))

= Pr(‖zt+τ‖22 < d(1 + ε)).

Thus, using the Chernoff bound for the Standard normal distribution for zt+τ ∼ N (0, I), we have
that

Pr(‖xt+τ − µt+τ‖2 > σ
√
d(1 + ε)) ≤ exp

(
−dε

2

8

)
.

Similarly,

Pr(‖xt − µt‖2 > σ
√
d(1 + ε)) ≤ exp

(
−dε

2

8

)
.

By tanking union hounds, we have that with probability at least 1− 2 exp(−dε2/8),

‖xt+τ − µt+τ‖2 ≤ σ
√
d(1 + ε), (2)

and
‖xt − µt‖2 ≤ σ

√
d(1 + ε). (3)

By using the upper bound of (2) in (1), we have that d̄(µt, µt+τ ) ≤ d̄(µt, xt+τ ) + σ
√
d(1 + ε),

which implies that

d̄(µt, µt+τ )− σ
√
d(1 + ε) ≤ d̄(µt, xt+τ ).

Using the assumption on (µt)t,

τα− σ
√
d(1 + ε) ≤ d̄(µt, xt+τ ).

Using the definition of τ ,

σ
√
d(1 + ε) < d̄(µt, xt+τ ).

This means that xt+τ /∈ St,ε. On the other hand, equation (3) shows that xt ∈ St,ε.

Proposition 2. Let x be a differentiable point of fθ such that Br(x) ⊆ Ω(x) for some r > 0. If
d > D, then there exists a δ ∈ Rd such that for any x̂ ∈ Rd and β̄ > 0, the following holds:
‖δ‖2 = r and

R(x, x̂) < β̄ =⇒ R(x+ δ, x̂) < β̄.

Proof. We can rewrite the output of the function as

fθ(x) = σ̇[L](x, θ)W [L]σ̇[L−1](x, θ)W [L−1] · · ·W [2]σ̇[1](x, θ)W [1]x.

Thus, for any δ such that (x+ δ) ∈ Br(x) ⊆ Ω(x), we have

fθ(x+ δ) = σ̇[L](x+ δ, θ)W [L]σ̇[L−1](x+ δ, θ)W [L−1] · · ·W [2]σ̇[1](x+ δ, θ)W [1](x+ δ)

= σ[L](x, θ)W [L]σ̇[L−1](x, θ)W [L−1] · · ·W [2]σ̇[1](x, θ)W [1](x+ δ)

= Mx+Mδ

where M = σ[L](x, θ)W [L]σ̇[L−1](x, θ)W [L−1] · · ·W [2]σ̇[1](x, θ)W [1]. Notice that M is a matrix
of size D by d. Thus, ff d > D, there the nulls space (or the kernel space) of M is not {0} and there
exists δ′ ∈ Rd in the null space of M such that ‖δ′‖ 6= 0 and M(r′δ′) = 0 for all r′ > 0. Thus,there
exists a δ ∈ Rd such that (x+ δ) ∈ Br(x) ⊆ Ω(x), ‖δ‖2 = r, and Mδ = 0, yielding

fθ(x+ δ) = Mx = fθ(x).

This implies the statement of this proposition.
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E Baseline Parameters

STORM: window_size=10000, max_radius=0.1

HS-Tree: window_size=100, num_trees=25, max_depth=15, initial_window_X=None

iForestASD: window_size=100, n_estimators=25, anomaly_threshold=0.5, drift_threshold=0.5

RS-Hash: sampling_points=1000, decay=0.015, num_components=100, num_hash_fns=1

RCF: num_trees=4, shingle_size=4, tree_size=256

LODA: num_bins=10, num_random_cuts=100

Kitsune: max_size_ae=10, grace_feature_mapping=10% of data, grace_anomaly_detector=10%
of data, learning_rate=0.1, hidden_ratio=0.75

DILOF: window size = 400, thresholds = [0.1f, 1.0f, 1.1f, 1.15f, 1.2f, 1.3f, 1.4f, 1.6f, 2.0f, 3.0f] ,
K = 8

XSTREAM: projection size=50, number of chains=50, depth=10, rowstream=0, nwindows=0,
initial sample size=# rows in data, scoring batch size=100000

MSTREAM: alpha = 0.85

Ex. IF: ntrees=200, sample_size=256, limit=None, ExtensionLevel=1
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