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EXPERTNET: A Deep Learning Approach to
Combined Risk Modeling and Subtyping in

Intensive Care Units
Shivin Srivastava, Vaibhav Rajan*

Abstract— Risk models play a crucial role in disease pre-
vention, particularly in intensive care units (ICU). Diseases
often have complex manifestations with heterogeneous
subpopulations, or subtypes, that exhibit distinct clini-
cal characteristics. Risk models that explicitly model sub-
types have high predictive accuracy and facilitate subtype-
specific personalization. Such models combine clustering
and classification methods but do not effectively utilize the
inferred subtypes in risk modeling. Their limitations include
tendency to obtain degenerate clusters and cluster-specific
data scarcity leading to insufficient training data for the cor-
responding classifier. In this paper, we develop a new deep
learning model for simultaneous clustering and classifica-
tion, EXPERTNET , with novel loss terms and network train-
ing strategies that address these limitations. The perfor-
mance of EXPERTNET is evaluated on the tasks of predicting
risk of (i) sepsis and (ii) acute respiratory distress syn-
drome (ARDS), using two large electronic medical records
datasets from ICUs. Our extensive experiments show that,
in comparison to state-of-the-art baselines for combined
clustering and classification, EXPERTNET achieves superior
accuracy in risk prediction for both ARDS and sepsis; and
comparable clustering performance. Visual analysis of the
clusters further demonstrates that the clusters obtained
are clinically meaningful and a knowledge-distilled model
shows significant differences in risk factors across the
subtypes. By addressing technical challenges in training
neural networks for simultaneous clustering and classifi-
cation, EXPERTNET lays the algorithmic foundation for the
future development of subtype-aware risk models.

Index Terms— Clinical Risk Prediction, Sepsis, Acute
Respiratory Distress Syndrome, Subtyping

I. INTRODUCTION

MUCH of clinical practice is reactive – aiming to inter-
vene to inhibit or abate the progression of diagnosed

diseases [1]. A preventive approach not only provides the
greatest health benefits, but is also the most cost-effective [1],
[2]. Risk models play a crucial role in enabling such preven-
tion, particularly in intensive care units (ICU), where patients
are vulnerable to several complications. When informed of
potential risks, clinical staff may be able to avert the disease
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or be better prepared to combat them. Many risk models have
been developed to aid clinical decision-making, e.g., [3]–[7].
Within ICUs rule-based models are commonly used to assess
patient severity and risk of specific diseases, e.g., [8]–[10]. In
contrast to rule-based models, machine learning models can
effectively utilize more diverse sources of information [11],
and are often more accurate, e.g., [3], [12]–[21]. The impact
of risk models on patient care and costs can be significant
even with marginal improvements in predictive accuracy. For
instance, just 1% reduction in sepsis cases through better
prevention can approximately reduce hospital costs in the US
by roughly $450M (by 2016 estimates) [22].

Analysis of large-scale electronic medical records (EMR)
has revealed tremendous heterogeneity within patient pop-
ulations (e.g., in sepsis [12]). We find distinct subpopula-
tions, called subtypes, having relatively homogeneous clinical
characteristics within the larger population. Most previous
approaches for risk modeling learn a single population-based
model using available historical patient data. Such a ‘one-size-
fits-all’ model may consistently underestimate or overestimate
risks for specific subtypes [23]. Risk models that account for
subtypes are found to be more effective than population-based
approaches [15], [24]–[26], providing improved accuracy and
informative, subtype-specific features [12], [27]. Thus, they
facilitate personalization as subsequent clinical decisions can
be tailored to each subtype [28].

Previous works that account for subtypes during risk mod-
eling broadly fall into the following three categories.

1) Most previous works adopt a ‘cluster-then-predict’ ap-
proach, where clustering is first done independently to
find subtypes and then predictive models (e.g., binary
classifiers) are trained for each cluster. E.g., in [15], au-
toencoders are used to learn patient representations which
are clustered to find subtypes, and a mortality predictor is
trained for each subtype via multi-task learning; In [12],
data is clustered to find cluster-specific features to predict
sepsis risk and the most important features are combined,
from each cluster, to build a population-level model.
Since clustering is performed independent of classifier
training, such approaches may not discover latent cluster
structures that benefit subsequent classification.

2) Some recent works have developed combined cluster-
ing and classification models that enforce stratification
through homogeneous risk outcomes for each subtype. In
[29], an Actor Critic Approach for Temporal Predictive
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Clustering (AC-TPC) is designed wherein latent repre-
sentations from patient data are clustered and predictor
networks are trained per cluster. In [30], Deep Signifi-
cance Clustering (DICE) is developed where patient rep-
resentations are clustered, and cluster membership values
are used to train a classifier while ensuring significant
association between the risk and cluster membership.
However, subtypes may be homogeneous with respect
to any clinical characteristic, not necessarily (only) the
disease risk. Hence, such models are limited in the kinds
of subtypes they find.

3) A risk model on general subtypes (i.e., not risk-stratified
clusters) was proposed in [27]. In their Deep Mixture
Neural Networks (DMNN) neural representations are
clustered using softmax gating and a mixture of expert
neural networks, weighted by the gating values, is used to
predict risk. As discussed in [27], the problems with this
approach are (a) The deep network can easily overfit lead-
ing to poor generalization and (b) The gating mechanism
can easily degenerate leading to all data points collapsing
into a single cluster (thus, no subtypes are found).

In addition, an unaddressed problem that can occur with all
these approaches is that if any of the inferred clusters has
very few data points, the corresponding local classifier does
not have sufficient data to learn from.

Our Contributions

In this paper, we develop EXPERTNET, a new deep
learning based subtype-aware risk model. EXPERTNET’s
architecture and training procedure are carefully designed to
address limitations of previous approaches. The architecture
of EXPERTNET combines the autoencoder architecture of
advanced neural clustering methods (e.g., [31]–[33]) with a
neural mixture-of-experts, where each local expert is a neural
network trained to predict subtype-specific risks. Naı̈vely
minimizing losses for both clustering and classification results
in trivial clusters that do not lead to improved risk prediction.
To address this problem, we propose new regularizer terms
in the loss function, which are designed to prevent distortion
in the latent space and control cluster sizes.

For relatively smaller clusters, cluster-specific local net-
works cannot learn well if only the data points within their
own clusters are used for training. To address this problem, we
design a novel cluster-weighted training strategy. Each local
network is trained on all data points with those from its own
cluster having higher weight compared to those from other
clusters. We use each patient’s probability of lying in a cluster
as the weight, which itself is inferred during model training
and is iteratively optimized to improve both the clustering and
risk prediction. Thus, clustering impacts the risk model not just
by grouping the data for each local expert but also informs the
magnitude of signal each local expert uses for data samples.
The mixture of experts are both trained together on shared
data, with different weights, and used together for prediction.

Unlike previous ‘cluster-then-predict’ approaches, through
combined clustering and classification, EXPERTNET obtains
latent patient representations that both have meaningful

cluster structure and yield improved risk prediction. Further,
EXPERTNET does not impose stratification requirements,
thereby yielding generic subtypes. Although EXPERTNET
also follows a mixture-of-experts architecture, it differs
from DMNN [27], the closest related work, in the use of
– (i) advanced deep learning based clustering techniques
and architecture which prevent degenerate clusterw and (ii)
novel loss terms and training strategies which improve its
performance on clustering and risk prediction.

We evaluate EXPERTNET for the task of predicting risk
of two life-threatening ICU complications: Sepsis and Acute
Respiratory Distress Syndrome (ARDS). On EMR data from
multiple ICU databases, we compare the performance of
EXPERTNET with several competitive baselines. Our exper-
iments show that for predicting risks of sepsis and ARDS,
EXPERTNET outperforms state-of-the-art risk models based on
(i) cluster-then-predict approaches (ii) simultaneous clustering
and classification methods. The clustering performance of
EXPERTNET is comparable (for ARDS) and superior (for
Sepsis) to advanced deep learning based (pure) clustering
methods in terms of metrics for cluster separability and feature
discrimination. Qualitative analysis and visualizations of the
clusters further demonstrate that the inferred subtypes differ
significantly in their clinical characteristics.

Interpretability is an important requirement in clinical appli-
cations. While neural models often have high accuracy, they
lack interpretability with respect to the reasons for predic-
tions. To address this limitation, many Explainable AI (XAI)
approaches are being developed [34], and have successfully
been used in clinical contexts [35]. Any XAI method may
be used with EXPERTNET. We obtain important features for
prediction using one such approach, Knowledge Distillation
(KD). One of the reasons to infer subtypes is to discover
associations between each patient subtype and risk factors that
vary across subtypes. Our KD-based analysis shows how that
can be achieved and also illustrates that the subtypes inferred
by EXPERTNET are clinically meaningful.

To summarize, our contributions in this paper are as follows:
• We develop EXPERTNET, a new subtype-aware risk

model, that leverages the powerful representation learn-
ing ability of deep neural networks to simultaneously
model the underlying heterogeneity and effectively utilize
the clustered patient representations within a mixture of
cluster-specific classifiers.

• We overcome limitations of previous subtype-aware risk
models through the design of novel loss terms to prevent
cluster degeneracy and new training strategies to address
the problem of cluster-specific data scarcity for training
the corresponding classifiers in EXPERTNET.

• We evaluate EXPERTNET on the tasks of predicting risk
of two ICU complications – sepsis and acute respira-
tory distress syndrome (ARDS) using two large EMR
databases. Our experiments demonstrate that EXPERT-
NET outperforms state-of-the-art baselines for combined
clustering and classification on risk prediction, and ob-
tains clinically meaningful subtypes with differing clini-
cal characteristics.
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II. METHOD

A. Problem Formulation

Given N datapoints {xi ∈ X}Ni=1, where each xi represents
a feature vector for a patient, class labels yi ∈ {1, . . . ,B},
associated with every point xi and the number of clusters k,
our aim is to simultaneously (i) cluster the N datapoints into
k clusters, each represented by a centroid µj , j ∈ {1, . . . , k},
and (ii) build k distinct supervised classification models within
each cluster. Note that during training, labels are used only for
building the classification models and not for clustering.

B. Deep Embedded Clustering

We now briefly describe DEC’s loss function [36] that is
utilized in EXPERTNET. DEC uses an autoencoder architecture
to obtain latent representations and cluster centroids. Initial
latent representations zi for data points xi are found using
a pretrained autoencoder. Initial cluster centroids {µj} are
obtained by using k-means on the latent representations. The
decoder is then removed and the representations are fine tuned
by minimizing the Kullback-Leibler (KL) divergence between
two distributions, P = {pij} and Q = {qij}, defined below.

Lc = KL(P ||Q) =

N∑
i=1

N∑
j=1

pij log
pij
qij

, (1)

where qij is the probability of assigning the ith embedded data
point (zi) to the jth cluster (with centroid µj), i.e., the soft
cluster assignment values for the ith data point. It is measured
using the similarity (via the Student’s t kernel) between the
embedded point and the centroid [37] as follows:

qij =
(1 + ∥zi − µj∥2)−1∑
j(1 + ∥zi − µj∥2)−1

(2)

The target distribution pij is defined in terms of qij itself as:

pij =
q2ij/

∑
i qij∑

j(q
2
ij/

∑
i qij)

(3)

The term
∑

i qij (that denotes cluster size) normalizes the loss
contribution of each centroid to prevent large clusters from
distorting the embedding space. This can be viewed as a form
of self supervision as more emphasis is given to data points
assigned with high confidence (high qij) and points with high
confidence act as anchors and distribute other points around
them more densely (leading to improved purity of clusters).
The predicted cluster label of xi is argmaxj qij .

C. EXPERTNET: Neural Architecture

Fig. 1 shows the neural architecture of EXPERTNET that
consists of an encoder, a decoder and k local networks
(LNj). The encoder, which models the parameterized function
f(U) : X −→ Z, is used to obtain low-dimensional latent
representations (Zi) of input datapoints (Xi), where the pa-
rameters U are the network weights. Cluster structure is learnt
in this latent space (as described in section B above) and
latent representations are used in local networks, to train k
classification networks that learn the parameterized functions

Encoder

Decoder

Fig. 1: Neural architecture of EXPERTNET, consisting of an encoder, a
decoder and k local expert networks (LNj ). Latent representations obtained
from the encoder are clustered and used as inputs to train the local networks.
The entire network is trained in an end-to-end manner. During prediction, the
trained encoder and local networks are used as described in the text.

h(Wj) : Z −→ ŷj for j = 1 . . . k, where Wj are the
corresponding network weights. In addition, there is a decoder
which models the parameterized function g(V) : Z −→ X ,
where the parameters V are the network weights. The decoder
is used to reconstruct the input from the latent representations.
The network weights: U ,V, {Wj}kj=1 are learnt by optimizing
a combination of losses as described in the following.

D. EXPERTNET: Loss Function
The overall loss function L is a weighted combination, with

coefficients β, γ, δ ≥ 0, of the reconstruction loss Lr, cluster-
ing loss Lc, cluster balance loss Lbal and classification loss Ls:

L = Lr + β · Lc + γ · Ls + δ · Lbal (4)

Lc is the KL divergence loss (Eq. 1), where the cluster
membership distribution Q (Eq. 2) uses representations zi and
cluster centroids µj inferred during EXPERTNET training. As
suggested in [31], [32], to prevent distortion in the latent space
and improve clustering performance, we add the reconstruction
loss measured by mean squared error:

Lr =

N∑
i=1

∥xi − g(f(xi))∥2 (5)

DEC and its variants are centroid-based and have objec-
tives similar to that of k-means. In such approaches, the
encoder can map the centroids to a single point to make
the loss zero and thus collapse the clusters resulting in
trivial solutions. To address this problem in EXPERTNET
we design a novel cluster balance loss to discourage un-
evenly distributed cluster sizes. We define the ‘soft’ size of
a cluster Cj as |Cj | =

∑
i qij and cluster support counts

S = [|C1|, |C2|, . . . , |Ck|] as a k-dimensional probability
distribution. Let Uk = (1/k)U(0, 1) denote the k-dimensional
uniform distribution function. We use the Hellinger distance
(H), which measures the dissimilarity between two distribu-
tions, as the loss Lbal = H(S||Uk) =

1
2∥

√
S −

√
Uk∥2. Ls is

a weighted cross-entropy classification loss described below.

E. EXPERTNET: Training
To initialize the parameters (U ,V), we first pre-train the

encoder and decoder with the input data using only the recon-
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struction loss Lr. This is followed by k-means clustering on
{zi = f(xi;U)}Ni=1 to obtain cluster centroids {µi}ki=1 which
are used to calculate cluster membership and target distribu-
tions, Q,P . After initialization, we use mini-batch stochastic
gradient descent to train the entire network, using the loss L.
To stabilize training we update P only after every epoch.

Since the embeddings get updated progressively in every
iteration, we train the LNs for a larger number of sub-iterations
within every iteration of the main training loop. The number
of sub-iterations gradually increases (by 1 for every 5 epochs
until a max-limit which we set to 10). This enables the LNs
to learn better from the stabilized clustered embeddings than
from the intermediate representations.

Further, we use a novel strategy called Cluster Weighted
Training in each sub-iteration, enabling each LN to learn
from data in other clusters. This addresses the problem of
insufficient training data for relatively smaller clusters. Each
LN is trained on the entire training data, but with higher
weights for intra-cluster data points and lower weights for
other data points. We leverage the probabilistic definition of
cluster membership to obtain individual weights for each train-
ing point with respect to each LN. This enables points within
each cluster to have a relatively higher weight compared to
points outside the cluster. The local loss utilizes these weights
to calculate the final loss function. The final classification loss
is a weighted cross entropy (CE) loss:

Ls =

k∑
j=1

∑
p∈Cj

qp,j CE(yp, hj(xp;Vj)). (6)

The LNs are trained in this manner for T −1 sub-iterations
without backpropagating the error to the encoder. The indi-
vidual errors are collected from all the k LNs only at the last
(T th) iteration and backpropagated to the encoder to adjust the
cluster representations accordingly. After training, the encoder
network is frozen and the local networks are finetuned, using
the cluster-weighted classification loss as described above, on
the latent embeddings to further improve LN performance.
Algorithm 1 summarizes the entire training procedure.

Training Time Complexity: We assume that the training data
has N data points, the encoder, decoder, and the k local
networks in EXPERTNET have the same network architecture,
with L layers, and layer l has sl number of neurons. The
overall time complexity of Algorithm 1, when run for E

epochs, is O
(
N · E · Titer · k

∑L
ℓ=1 sℓsℓ−1 + E ·Nk

)
. The

detailed derivation is presented in Appendix VI.

F. EXPERTNET: Predictions

Prediction requires only the encoder and local networks. For
a test point x̂p, the soft cluster probabilities (q̂pj) are calculated
from Eq. 2 using the cluster centroids (learnt after training)
and embedding of the test point (from the encoder). All the
local networks are used to predict the class label using the
cluster membership probabilities: ŷp =

∑k
j=1 q̂pjhj(x̂p).

Algorithm 1: EXPERTNET Training

Input: Training Data: X ∈ Rn×d, labels yn×1 ∈ [B]n,
k, f(·;U), g(·;V) and {hj(·;Wj)}kj=1, J

1 ▷ Initialization
2 Pre-train f(·;U) & g(·;V) via back-propagating loss in

eq. 5
3 Compute µ(Cj)∀ Cj s.t. j ∈ [k]
4 Compute matrices Q and P according to eqs. 2 and 3
5 ▷ Algorithm
6 while Validation AUC increases do
7 for every mini-batch Xb do
8 Calculate latent embeddings by encoder U
9 for Titer sub-iterations do

10 Train local classifiers {LNj}kj=1

11 Backpropagate
L = Lr + β ·Lc + γ ·Ls + δ ·Lbal and update
µ,U ,V and {LN}kj=1

12 Update P via eq. (3)

13 ▷ Fine tune Local Classifiers
14 For every cluster Cj , train a classifier hj on (Xj ,Yj).
15 Output Trained EXPERTNET model. Cluster centroids

µ = {µj}kj=1

G. Interpretability by Distilling EXPERTNET

We obtain important features for prediction using Knowl-
edge Distillation (KD), that has been used previously for risk
prediction in critical care (e.g., in [27], [38]). KD “distills”
the learnt knowledge in a complex machine learning model
into a relatively simpler model that may be more interpretable
without significant loss in performance [39], [40]. The general
procedure is to first train the neural network, then use training
data features and predictions of the network as the input
data to train the simpler model. We choose Random Forest
(RF) to distill EXPERTNET because RF has sufficient capacity
to model non-linear interactions and also provides feature
importance values.

Distilled 
Encoder

Predicted 
Clusters

Distilled Local Networks

Fig. 2: Distilled EXPERTNET model.

We train multiple KD models (see Fig. 2), one for distilling
the encoder and k separate distilled models for the local
networks. Each KD model is a RF with 100 base decision
trees. The RF for distilling the encoder learns to predict the
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cluster labels ĉi = argmaxj qij values (from EXPERTNET’s
encoder), with features xi as inputs. The k local RF models are
trained on the predictions of EXPERTNET’s k LNs. The trained
KD models can be used for prediction as follows. First, the
distilled encoder RF predicts the cluster membership for a test
data point, which determines the LN to use; the corresponding
distilled LN then predicts the class label.

III. EXPERIMENTS

A. Experimental Setting

1) Risks: Our experimental evaluation is on two important
disease risks: Sepsis and Acute Respiratory Distress Syndrome
(ARDS). Sepsis is a life-threatening condition that occurs
when the body’s response to infection causes tissue damage,
organ failure, or death. In the US, about 1.7 million develop
sepsis and 270,000 die of sepsis per year; in fact, over 1/3rd
of people who die in U.S. hospitals have sepsis [41]. Globally,
in 2017, around 48.9 million developed sepsis, and there were
11 million sepsis-related deaths [42]. The costs for managing
sepsis in U.S. hospitals – at USD 24 billion annually (13% of
U.S. healthcare expenses) – exceed those for any other health
condition [22]. ARDS often manifests as respiratory failure
characterized by rapid onset of widespread inflammation in
the lungs. Globally, ARDS affects more than 3 million people
annually, contributing to about 10% of ICU admissions; with
high mortality of 35-46% depending on severity at onset [43]–
[45]. The recent COVID-19 outbreak has also led to large
number of ARDS cases [46].

2) Data: We use de-identified patient data from publicly
available ICU databases. For ARDS prediction, we use the
MIMIC III dataset [47] comprising 33,798 unique patients’
data from the Beth Israel Deaconess Medical Center, USA.
For sepsis prediction, we use the dataset, from [48], of 40,366
patients from MIMIC III and Emory University Hospital,
USA. Sepsis patients are identified using the Sepsis-3 criteria
[49]–[51], as described in [48]. ARDS patients are identified,
using the Berlin criteria [52], [53]. Thus, hourly binary
labels indicating the presence/absence of the conditions are
determined for each patient.

3) Prediction Setting: We use the first 24 hours of data to
predict risk (of each condition, separately) in the remaining
ICU stay, as recommended in [54]. All patients whose length
of ICU stay is less than 24 hours and who develop the
condition within 24 hours of ICU stay are excluded (Fig. 3).
After these exclusions, we have 30,661 and 22,450 patients in
the Sepsis and ARDS datasets out of which 1,844 and 1,701
patients have a diagnosis of sepsis and ARDS, respectively,
24 hours after ICU entry. Note that our datasets are highly
imbalanced: 6% and 7.5% positive cases in Sepsis and ARDS
datasets respectively.

4) Features: Routinely available clinical variables are used
for prediction. For the sepsis dataset, we use all the variables
given in [48] and the SOFA score [9]. For the ARDS dataset,
we include the variables used in previous studies [55]–[57].
Only those variables with at least one non-missing value
in all included patients are considered. Tables V and VI in
Appendix I list all the variables and their summary statistics

 

Fig. 3: Prediction Setting: Green color indicates time periods before the
diagnosis of complication (Sepsis/ARDS). Red color indicates time periods
at and after the diagnosis. Clinical data up to 24 hours from ICU admission is
used to predict the risk of complication later. Patients with less than 24 hours
of ICU stay and those with diagnosis within the first 24 hours are excluded.

in our ARDS and sepsis datasets respectively. Standard
preprocessing steps are performed to obtain patient-wise
feature vectors. Categorical variables are converted to binary
vectors using one-hot encoding. For temporal variables (i.e.,
variables with repeated measurements), we use the first, last,
median, minimum and maximum values in the first 24 hours as
features. Real-valued variables for each patient are normalized
to have mean 0 and standard deviation 1. Static features (e.g.,
age) are used directly. The final feature vector dimensions for
ARDS and Sepsis data are 486 and 209 respectively.

5) Evaluation Details: In each case of sepsis and ARDS, the
entire dataset is divided into train-test split of 85:15. Within
each train split, 15% of the data is used for validation and
the remaining for model training. All experiments are run on
21 such random splits for a robust evaluation and the average
test results are reported. Binary classification metrics are used
to evaluate performance on risk prediction: (i) Area under the
ROC Curve (AUC) and (ii) Area under the Precision Recall
Curve (AUPRC). Statistical significance of the performance
improvement is measured using Student’s t-test. To quanti-
tatively evaluate subtypes, we use (i) silhouette score (SIL)
to measure the density and separation of clusters and (ii)
a novel metric called the Hypothesis Testing based Feature
Discrimination (HTFD) to measure feature discrimination
across inferred clusters described below.

6) Hypothesis testing based Feature Discrimination (HTFD):
A common practice in subtyping studies (e.g., [58]) is to
check, for each feature, if there is a statistically significant
difference, indicated by a low p-value (< 0.05), in its distri-
bution across the inferred subtypes. We quantify this through
an aggregation over all features in the HTFD metric. Let Xf

i

denote the values of feature f for data points in the ith cluster
Ci and Xf denote the feature values of data points in all
clusters except Ci (stacked together). F denotes the set of all
features and |F | is the total number of features. For cluster
Ci, we define:

HTFD(Ci) =
1

|F |
∑
f∈F

− ln
(

p-value(Xf
i , X

f )
)

(7)

where p-values are obtained via Student’s t-test. The negative
logarithm of p-value is added and normalized by the number
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TABLE I: Classification (AUC and AUPRC) scores for EXPERTNET and baselines on ARDS and Sepsis dataset for k = 2, 3, 4, 5 (row-wise). “-” indicates
no results due to an empty cluster. Within each row, the best result is in bold and the second best result is underlined. p∗ < 0.05, p∗∗ < 0.01 indicates
significantly better performance of EXPERTNET compared to the baseline.

Dataset k KM-Z DCN-Z IDEC-Z DMNN AC-TPC DICE EXPERTNET
(Metric) - (2017) (2017) (2020) (2020) (2021) (Ours)

ARDS 2 0.134± 0.031∗∗ 0.234± 0.04∗∗ 0.215± 0.04∗∗ 0.263± 0.02∗∗ − 0.256± 0.021∗∗ 0.291± 0.023
(AUPRC) 3 0.109± 0.033∗∗ 0.198± 0.053∗∗ 0.187± 0.061∗∗ 0.261± 0.024∗ 0.156± 0.039∗∗ 0.263± 0.025 0.28± 0.035

4 0.126± 0.037∗∗ 0.203± 0.042∗∗ 0.179± 0.048∗∗ 0.245± 0.017∗∗ 0.142± 0.03∗∗ 0.266± 0.018∗ 0.284± 0.033
5 0.094± 0.03∗∗ 0.177± 0.051∗∗ 0.199± 0.043∗∗ 0.249± 0.034∗∗ 0.147± 0.029∗∗ 0.192± 0.031∗∗ 0.29± 0.02

Sepsis 2 0.091± 0.018∗∗ 0.206± 0.102∗∗ 0.278± 0.068∗∗ 0.291± 0.031∗∗ − 0.335± 0.038∗∗ 0.426± 0.03
(AUPRC) 3 0.113± 0.019∗∗ 0.195± 0.082∗∗ 0.265± 0.06∗∗ 0.287± 0.03∗∗ 0.19± 0.024∗∗ 0.218± 0.022∗∗ 0.414± 0.035

4 0.087± 0.023∗∗ 0.173± 0.045∗∗ 0.266± 0.033∗∗ 0.301± 0.022∗∗ 0.192± 0.04∗∗ 0.332± 0.048∗∗ 0.418± 0.038
5 0.089± 0.018∗∗ 0.181± 0.069∗∗ 0.26± 0.033∗∗ 0.291± 0.028∗∗ 0.209± 0.037∗∗ 0.243± 0.033∗∗ 0.409± 0.038

ARDS 2 0.577± 0.066∗∗ 0.726± 0.040∗∗ 0.707± 0.041∗∗ 0.755± 0.014∗∗ − 0.715± 0.013∗∗ 0.785± 0.015
(AUC) 3 0.524± 0.081∗∗ 0.681± 0.061∗∗ 0.658± 0.083∗∗ 0.76± 0.011 0.638± 0.009∗∗ 0.732± 0.012∗∗ 0.766± 0.034

4 0.554± 0.070∗∗ 0.692± 0.050∗∗ 0.656± 0.057∗∗ 0.747± 0.014∗∗ 0.606± 0.040∗∗ 0.736± 0.010∗∗ 0.772± 0.020
5 0.489± 0.066∗∗ 0.646± 0.081∗∗ 0.658± 0.068∗∗ 0.746± 0.02∗∗ 0.626± 0.037∗∗ 0.691± 0.020∗∗ 0.784± 0.013

Sepsis 2 0.576± 0.048∗∗ 0.713± 0.128∗∗ 0.784± 0.057∗∗ 0.824± 0.011∗∗ − 0.770± 0.015∗∗ 0.861± 0.017
(AUC) 3 0.614± 0.048∗∗ 0.728± 0.081∗∗ 0.768± 0.079∗∗ 0.818± 0.02∗∗ 0.718± 0.043∗∗ 0.731± 0.040∗∗ 0.854± 0.023

4 0.546± 0.071∗∗ 0.719± 0.045∗∗ 0.768± 0.035∗∗ 0.83± 0.011∗∗ 0.689± 0.071∗∗ 0.800± 0.030∗∗ 0.853± 0.017
5 0.566± 0.058∗∗ 0.719± 0.061∗∗ 0.740± 0.047∗∗ 0.821± 0.016∗∗ 0.706± 0.053∗∗ 0.78± 0.041∗∗ 0.847± 0.019

TABLE II: Clustering (Silhouette and HTFD) scores for EXPERTNET and baselines on ARDS and Sepsis dataset for k = 2, 3, 4, 5 (row-wise). “-” indicates
no results due to an empty cluster. Within each row, the best result is in bold and the second best result is underlined. p∗ < 0.05, p∗∗ < 0.01 indicates
significantly different (better/worse) performance of baseline compared to EXPERTNET.

Dataset k KM-Z DCN-Z IDEC-Z DMNN AC-TPC DICE EXPERTNET
(Metric) - (2017) (2017) (2020) (2020) (2021) (Ours)

ARDS 2 0.414± 0.188 0.439± 0.119 0.432± 0.117 0.069± 0.173∗∗ − 0.514± 0.031∗∗ 0.404± 0.134
(SIL) 3 0.212± 0.098∗∗ 0.272± 0.148∗∗ 0.296± 0.121∗∗ 0.02± 0.09∗∗ 0.17± 0.097∗∗ 0.355± 0.053∗ 0.423± 0.11

4 0.144± 0.091∗∗ 0.198± 0.122∗∗ 0.197± 0.143∗∗ 0.0± 0.0∗∗ 0.212± 0.08∗∗ 0.313± 0.033 0.373± 0.134
5 0.122± 0.086∗∗ 0.09± 0.094∗∗ 0.205± 0.138 0.088± 0.186∗∗ 0.196± 0.093 0.272± 0.032 0.244± 0.117

Sepsis 2 0.485± 0.022∗∗ 0.554± 0.185 0.581± 0.147 0.074± 0.16∗∗ − 0.48± 0.028∗∗ 0.649± 0.13
(SIL) 3 0.218± 0.112∗∗ 0.319± 0.221∗∗ 0.474± 0.262 0.056± 0.136∗∗ 0.148± 0.063∗∗ 0.437± 0.018∗∗ 0.635± 0.127

4 0.131± 0.054∗∗ 0.197± 0.171∗∗ 0.435± 0.261∗∗ 0.073± 0.154∗∗ 0.151± 0.064∗∗ 0.424± 0.026∗∗ 0.623± 0.13
5 0.157± 0.085∗∗ 0.126± 0.102∗∗ 0.401± 0.228∗∗ 0.059± 0.136∗∗ 0.159± 0.073∗∗ 0.126± 0.102∗∗ 0.668± 0.125

ARDS 2 1.069± 0.379∗∗ 1.12± 0.118∗∗ 1.135± 0.13∗∗ 0.978± 0.874 − 1.118± 0.03∗∗ 1.31± 0.097
(HTFD) 3 0.961± 0.364∗∗ 0.89± 0.336∗∗ 0.994± 0.437∗ 0.858± 0.9 0.7± 0.251∗∗ 0.976± 0.116∗∗ 1.22± 0.09

4 0.876± 0.373 0.891± 0.335 1.017± 0.253 0.772± 0.892 0.263± 0.327∗∗ 1.025± 0.097 1.049± 0.288
5 0.741± 0.37∗∗ 0.612± 0.331∗ 0.886± 0.314∗∗ 0.863± 0.896 0.078± 0.241∗∗ 0.899± 0.058 0.895± 0.436

Sepsis 2 1.466± 0.015∗∗ 1.462± 0.064∗∗ 1.496± 0.069∗∗ 1.155± 0.783∗ − 1.465± 0.008∗∗ 1.554± 0.038
(HTFD) 3 1.414± 0.327 1.4± 0.133∗∗ 1.48± 0.037 0.686± 0.875∗∗ 1.24± 0.138∗∗ 1.435± 0.06∗∗ 1.489± 0.048

4 1.334± 0.304 1.291± 0.104∗∗ 1.434± 0.044 0.642± 0.84∗∗ 0.715± 0.483∗∗ 1.262± 0.059∗∗ 1.457± 0.041
5 1.161± 0.387 1.09± 0.305∗ 1.391± 0.071 0.519± 0.812∗∗ 0.178± 0.368∗∗ 1.09± 0.305∗ 1.341± 0.302

of features to obtain a measure where higher values indicate
better feature discrimination across the ith cluster and remain-
ing clusters. A single value for the entire clustering is obtained
by the average over each cluster’s HTFD values. We multiply
by a positive constant 0.05 (a monotonic transformation that
does not change the ordering of the values) to obtain average
HTFD values close to 1, for ease of interpretation.

7) Baselines: We compare the performance of EXPERTNET
with two types of baseline algorithms.

1) ‘Cluster-then-predict’ approaches where clustering is first
independently performed and then neural network classi-
fiers are trained on each cluster (denoted by -Z). We com-
pare with 3 clustering methods: (i) k-means (KM), where
we use an autoencoder to get embeddings which are then
clustered, (ii) Deep Clustering Network (DCN) [32] and
(iii) Improved Deep Embedded Clustering (IDEC) [31].

2) Simultaneous clustering and classification methods: (i)
Deep Mixture of Neural Networks (DMNN) [27] (ii)
Actor Critic Temporal Predictive Clustering (AC-TPC)
[29] and (iii) Deep Significance Clustering (DICE) [30].

All the methods require the number of clusters k as input.
We report results for k = 2, 3, 4, 5. For a fair comparison, neu-
ral network architectures are identical for (i) local networks in
EXPERTNET and classifiers in ‘cluster-then-predict’ baselines,
(ii) encoder in EXPERTNET and feedforward networks used
to obtain latent representations in AC-TPC and DICE. We use
UMAP [59] to visualize the clusters and feature distribution in
data embeddings found by EXPERTNET in 2 dimensions. The
axes represent the 2 dimensions to which data is projected.
Additional details on hyperparameters are in Appendix II.

8) Sensitivity Analysis and Ablation Studies: We evaluate the
sensitivity of EXPERTNET on hyperparameters β, γ and δ (loss
weights in Eq. 4). We individually vary each hyperparameter
while setting the other two to 0 and measure the classification
and clustering performance. Note that a value of 0 implies that
the corresponding term is not used and thus ablates the term.
Further, our cluster weighted loss approach can be optionally
used independently during training and prediction. As another
ablation study, we evaluate the effect of all four combinations
(see Fig. 8). We denote the combinations by TT, TF, FT and
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TABLE III: Clinical variables specific to subtypes in ARDS and Sepsis datasets for k = 3. S-1, subtype 1; S-2, subtype 2; S-3, subtype 3

(a) Clinical variables significantly specific to ARDS subtypes 1, 2 and 3
Clinical Variables Mean or % Subtype 1 Mean or % Subtype 2 Mean or % Subtype 3
Cluster Details (|C1| = 3598,%D = 12.5) (|C2| = 11293,%D = 4.7) (|C3| = 1328,%D = 17.0) S-1 S-2 S-3

Ventilator 0.727 ± 0.446 0.029 ± 0.166 0.158 ± 0.365 Y Y
Mean Airway Pressure 9.308 ± 3.012 13.0 ± 0.033 12.433 ± 1.88 Y Y
PIP 18.197 ± 7.852 12.0 ± 0.0 13.106 ± 4.163 Y Y
PEEP 4.53 ± 2.161 3.511 ± 0.182 3.684 ± 0.97 Y Y
Plateau Pressure 24.149 ± 5.718 28.0 ± 0.0 27.399 ± 2.56 Y Y
PaO2 161.227 ± 93.522 109.698 ± 36.592 109.892 ± 62.967 Y Y
Fibrinogen 266.799 ± 70.605 280.14 ± 48.002 360.616 ± 191.886 Y Y
Bilirubin Total 0.678 ± 0.927 0.823 ± 1.568 2.947 ± 6.759 Y
Blood urea nitrogen 19.754 ± 14.631 24.675 ± 20.156 40.603 ± 31.292 Y Y
Blood culture -69136.57 ± 48851.355 -52641.595 ± 54762.433 -17131.559 ± 53005.115 Y Y

(b) Clinical variables significantly specific to Sepsis subtypes 1, 2 and 3
Cluster Details (|C1| = 7511,%D = 9.3) (|C2| = 4978,%D = 6.7) (|C3| = 9662,%D = 3.0) S-1 S-2 S-3

pH 7.373 ± 0.395 4.154 ± 3.664 0.14 ± 1.007 Y Y Y
PaCO2 40.296 ± 9.293 22.105 ± 21.1 0.0 ± 0.0 Y Y Y
FiO2 0.418 ± 0.255 0.265 ± 0.283 0.032 ± 0.127 Y Y
SaO2 61.132 ± 45.52 37.328 ± 45.875 0.785 ± 7.547 Y Y
Sofa O2 2.589 ± 1.379 3.188 ± 1.198 3.998 ± 0.062 Y Y Y
MAP 85.824 ± 13.628 62.391 ± 8.828 89.397 ± 14.442 Y Y Y
SBP 127.914 ± 23.468 100.234 ± 20.918 128.628 ± 25.895 Y Y
DBP 58.729 ± 22.106 38.27 ± 22.96 53.316 ± 31.819 Y Y
Unit2 0.428 ± 0.495 0.374 ± 0.484 0.185 ± 0.388 Y Y Y
HCO3 15.95 ± 11.84 16.011 ± 11.869 7.75 ± 11.708 Y Y

TABLE IV: Top 10 most important features for ARDS and Sepsis prediction in for 3 clusters. Features common in two clusters are highlighted in yellow,
those common in three clusters are highlighted in blue, while the rest are unique to their respective clusters. |Ci| indicates the size of the ith cluster. %D
indicates the number of positive class labels, i.e., patients diagnosed with the disease (sepsis/ARDS), in the cluster.

ARDS Sepsis

|C1| = 3598 |C2| = 11293 |C3| = 1328 |C1| = 7511 |C2| = 4978 |C3| = 9662
%D = 12.5 %D = 4.7 %D = 17.0 %D = 9.3 %D = 6.7 %D = 3.0

GCS Verbal Red blood cell count Platelets Temp SBP SBP
Extubated Hematocrit Respiratory rate HR Temp HospAdmTime
GCS Total White blood cell count Heart Rate HospAdmTime HospAdmTime Temp
GCS Eye Platelets Glucose SBP Age Age
GCS Motor PTT Mean corpuscular hemoglobin WBC Glucose Glucose
Age Respiratory rate PaO2 Platelets WBC HR
PaO2 Hemoglobin Blood urea nitrogen Age Resp WBC
Red blood cell count Mean blood pressure GCS Verbal Glucose HR Creatinine
Heart Rate Heart Rate Weight Resp Platelets BUN
PIP Temperature Urine output Creatinine Phosphate Hct

FF, where the first and second positions indicate training and
prediction respectively. T indicates the use of our approach
while F indicates that it is not used. All the results are averages
over 5 runs.

9) Code and Online Appendix: The source code for EX-
PERTNET is available at https://github.com/shivin9/ExpertNet.
The online appendix is available here.

B. Results

1) Risk Prediction: Table I shows the performance of
EXPERTNET and all the baseline methods. The performance
of both cluster-then-predict algorithms (KM-Z, DCN-Z and
IDEC-Z) and simultaneous clustering and classification
models (DMNN, AC-TPC and DICE) are significantly
inferior to that of EXPERTNET for all values of k tested.
The margin of improvement, in both Sepsis and ARDS, is
higher for AUPRC, which is considered a better metric in

cases of class imbalance, as AUPRC correlates better with
positive predictive value and reflects the discrimination of
the features better [60]. Also note that AUPRC values are
dataset-dependent and the baseline value is the fraction of
positive samples, as discussed in [61]. Hence, in our highly
imbalanced datasets, the baseline values are 0.06 and 0.075
respectively for Sepsis and ARDS. Thus, it is not surprising
to find AUPRC values in the range of 0.1 – 0.5.

2) Subtyping: Table II shows our quantitative evaluation of
clustering performance. On Sepsis, EXPERTNET outperforms
all the baseline methods in all cases with respect to Silhouette
score and, in 3 out of 4 cases, for HTFD (in the 4th case, it
has the second best value, which is not significantly different
from the best). On ARDS, there is no single algorithm that
has the best performance across all values of k. With respect
to Silhouette score, EXPERTNET has the best score for k =
3, 4, and the second best score for k = 5. For HTFD,

https://github.com/shivin9/ExpertNet
https://shivin9.github.io/publication/expertnet/expertnet.pdf
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(a) Cluster and Labels (b) FiO2 (c) PaCO2

(d) pH (e) SaO2 (f) Sofa O2

(g) Cluster and Labels (h) Fibrinogen (i) FiO2

(j) Mean Airway Pressure (k) PIP (l) Ventilator

Fig. 4: Top (a-f) for Sepsis, Bottom (g-l) for ARDS. (a) and (g) show the 2-dimensional UMAP embeddings in representation space depicting overall clusters
for k = 3 (Green: Cluster 1, Pink: Cluster 2, Brown: Cluster 3. Dark green, pink and brown points represent patients who get Sepsis/ARDS in their respective
cohorts.) Other figures show variation of selected features (from Table III) for Sepsis (b-f) and for ARDS (g-l) data. Each point is color coded according to
the scale presented at the bottom (the minimum value is shaded blue while the maximum value is shaded yellow). Image best viewed in color.

EXPERTNET has the best score for k = 2, 3, 4, and the
second best score for k = 5. Both the second best scores,
for Silhouette and HTFD, are not significantly different from
the corresponding best scores. IDEC, a neural network based
pure clustering method performs well and the performance
of EXPERTNET (which uses a similar clustering technique)
is better or comparable in many cases. Note that low means
and high standard deviation in Silhouette and HTFD scores of
DMNN are due to degenerate or empty clusters (see Appendix
VII for a detailed discussion).

We qualitatively analyze the subtypes (clusters) for k = 2

(Table VII in Appendix IV) and k = 3 (Table III). Tables III(a)
and III(b) present the clinical variables that are significantly
different across the subtypes for ARDS and Sepsis respec-
tively. A ‘Y’ for a feature under the S-j column indicates
that that feature is significantly different in cluster Cj when
compared with the rest of the samples in the other two clusters.
They clearly indicate meaningful clustering with differences in
clinical characteristics across patient subtypes.

Visualization of the clusters demonstrates the discriminatory
power of the learnt embeddings. Fig. 4a and 4g, for sepsis and
ARDS respectively, show the embeddings of the clusters and
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(a) Sepsis Dataset (b) ARDS Dataset

Fig. 5: Plots of 2-dimensional UMAP embeddings of Sepsis and ARDS data
(in feature space) colored based on clusters found by EXPERTNET for k = 3
(color coded Green for Cluster 1, Pink for Cluster 2 and Brown for Cluster
3. Dark green and Dark Pink points represent patients who get Sepsis/ARDS
in their respective cohorts). Compare with Fig. 4 (a) and (g).

also depict the class labels within each cluster. We observe
that the clusters are well separated and within each cluster,
there are members of both classes (those with and without the
diseases). Similar visualizations for k = 2 are in Fig. 12 in Ap-
pendix IV. In contrast, the feature space does not show an ap-
parent cluster structure, especially for sepsis. Fig. 5 visualizes
the feature space with the colors (pink, green, and brown) de-
picting clusters found by EXPERTNET for k = 3. The cluster
separation in feature space is clearer for ARDS than for Sepsis.
This suggests an explanation for why the relative improvement
in performance (on Silhouette scores) is lower for ARDS. For
sepsis, EXPERTNET is better at disentangling the mingled fea-
tures in the latent space and achieves relatively better results.

3) Subtype-specific Risk Factors: Table IV shows the top 10
risk factors linked to each subtype for predicting ARDS and
Sepsis respectively inferred via knowledge distilled RF models
(for k = 3). In the case of sepsis, although the three subtypes
differ significantly in terms of the feature distributions, impor-
tant risk factors are found to be similar across the subtypes
with Phosphate being an important risk factor solely in subtype
2 while BUN and Hct solely in subtype 3. In the case of
ARDS, the risk factors differ in larger numbers across the
subtypes. Subtype 1 has several Glasgow Coma Scores (GCS)
scores as important risk predictors. This subtype is associated
with larger ventilator time. Thus, our analysis suggests that for
patients with a longer time on ventilator, monitoring GCS is
particularly important for predicting the onset of ARDS. The
results for k = 2 can be found in Table VIII in Appendix V.

4) Sensitivity Analysis and Ablation Studies: Figures 6 and
7 show the results for ARDS and Sepsis respectively. We
observe that both the AUC and AUPRC values are fairly
robust to changes in β, γ, δ, for a large range of their values.
For optimum performance, hyperparameter tuning is highly
desirable. Note that the value δ = 0 which indicates that the
cluster balance loss is not used gives lower AUC and AUPRC
values compared to most other non-zero values, particularly
for Sepsis. This shows that addition of this loss function
term improves performance. We study the sensitivity to these
hyperparameters on clustering performance in Appendix III.
Figures 8a and 8b show the performance on ARDS; and
Figures 8c and 8d show the performance on Sepsis datasets for
all 4 combinations, TT, FT, TF and FF. The best performance,

in 7 out of 8 cases, is achieved when the approach is used both
in training and prediction (TT, blue). The advantages of our
proposed loss terms and cluster-weighted training approach
are thus empirically supported by our ablation studies.

IV. DISCUSSION AND CONCLUSION

Our principal contribution is a neural model, EXPERTNET,
for subtype-aware risk prediction. Leveraging the representa-
tion learning power of deep networks, EXPERTNET finds latent
well clustered patient representations, and, simultaneously,
cluster-specific classification networks are trained to predict
risk outcomes. Standard techniques for training the network
yield trivial clusterings or insufficient intra-cluster training
data for classification – we address these challenges through a
new loss function and training strategy that lead to improved
predictive accuracy and clinically meaningful clusters.

Our model can be used in decision support systems
within ICUs to potentially prevent complications, which in
turn can improve patient outcomes and reduce the clinical
and economic burden of these diseases. To demonstrate its
practical utility, we evaluate the performance of EXPERTNET
for predicting two important ICU complications, sepsis
and ARDS. In our experiments, EXPERTNET outperforms
state-of-the-art approaches for simultaneous clustering and
classification as well as cluster-then-predict methods, on
risk prediction. The clusters obtained by EXPERTNET are
clinically meaningful and, in terms of cluster separability and
feature discrimination, are comparable or better than those
from competitive clustering methods. We show how subtype-
specific risk factors can be determined using knowledge
distillation. Our ablation studies demonstrate the benefits
of our novel loss terms and training strategy. In addition,
we show that such training strategies can also benefit other
models – we discuss the case of DMNN in Appendix VII.

Our proposed approach has some limitations. First, similar
to many clustering algorithms, the number of clusters has to be
determined a priori. Often, a range of values for k is used and
the best value is chosen based on application-specific require-
ments. The choice can be made using scores such as Silhouette
score or Calinski-Harabasz Index. Second, our model is based
on neural networks and is not inherently interpretable. Post-
hoc XAI techniques can be used to interpret the model’s pre-
dictions [34]. We have described one such technique, Knowl-
edge Distillation [40], in the paper. Many other techniques
exist such as LIME [62] and SHAP [63] may also be used.
Third, in terms of evaluation, we have demonstrated perfor-
mance gains on two complications only, using data from two
hospitals. Generalizability to other complications, prediction
settings, and hospitals needs to be evaluated in future work.

Future studies can extend this work in many ways. The
neural architecture of EXPERTNET allows it to be generalized
to other datatypes, without changing the remaining architec-
ture which only utilizes latent representations. This may be
evaluated, e.g., using text, images, sequential or multimodal
data found in ICUs. Techniques to infer number of clusters
during model training can be explored. Future work can also
evaluate the efficacy of EXPERTNET in other contexts that
require modeling underlying heterogeneous sub-populations.
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Fig. 6: Sensitivity Analysis on the ARDS dataset
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Fig. 7: Sensitivity Analysis on the Sepsis dataset
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Fig. 8: Ablation Studies for Cluster weighted training approach on ARDS dataset (a–b) and Sepsis dataset (c–d)
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APPENDIX I
FEATURE LISTS

See tables V, VI for full feature lists for ARDS and Sepsis datasets.

TABLE V: Complete Feature Set for ARDS Dataset

Feature Mean (Std) Feature Mean (Std)

Alanine aminotransferase (IU/L) 66.672 (385.139) Mean Airway Pressure (mmHg) 12.141 (2.153)
Albumin (g/dL) 3.196 (0.485) Mean blood pressure (mmHg) 79.087 (15.890)
Alkaline phosphate (IU/L) 111.108 (95.917) Mean corpuscular hemoglobin (picograms/cell) 29.938 (3.885)
Anion gap (mEq/L) 13.430 (3.482) Mean corpuscular hemoglobin conc. (pg/cell) 33.837 (1.562)
Antibiotics (Minutes) -75336.866 (43209.090) Mean corpuscular volume (NA) 89.381 (6.708)
Asparate aminotransferase (IU/L) 64.435 (415.293) Minute Volume (L/min) 6.873 (3.290)
Band Forms 5.993 (3.859) Monocytes (%) 4.729 (2.864)
Base excess -0.271 (5.782) Neutrophils (%) 69.477 (17.137)
Basophils 0.237 (0.382) Norepinephrine (pg/mL) 0.003 (0.027)
Bicarbonate (mEq/L) 24.271 (4.397) PEEP (cm H2O) 3.755 (1.081)
Bilirubin Total (mg/dL) 0.965 (2.475) PIP (cm H2O) 13.448 (4.633)
Blood culture -53484.533 (54702.938) PTT (sec) 35.220(18.613)
Blood urea nitrogen (mg/dL) 24.884 (20.811) PaCO2 (mmHg) 40.234 (6.857)
Calcium (mg/dL) 8.474 (0.783) PaO2 (mmHg) 120.851 (60.250)
Cardiac Index 3.279 (0.208) Phosphate (mg/dL) 3.491 (1.184)
Central Venous Pressure (mm Hg) 5.868 (12.825) Plateau Pressure (mm Hg) 27.104 (3.192)
Chloride mEq/L 105.039 (5.770) Platelets (109/L) 220.524 (110.209)
Cholesterol HDL (mg/dL) 35.173 (6.190) Potassium (mmol/L) 4.112 (1.840)
Cholesterol LDL (mg/dL) 68.632 (14.871) RBC count (106/µL)) 3.612 (0.718)
Cholesterol Total (mg/dL) 106.730 (25.995) Respiratory rate (/min) 19.222 (5.312)
Creatinine (mg/dL) 1.467 (2.888) SO2 (%) 96.631 (7.276)
D Dimer (ng/mL) 286.833 (764.986) Sodium (mEq/L) 138.610 (4.404)
Diastolic blood pressure (mm Hg) 61.754 (15.017) Stroke Volume (mL) 79.412 (6.073)
Dobutamine (mg/ml) 0.023 (0.388) Systemic Vascular Resistance Index (dynes/sec/cm−5) 1047.545 (228.710)
Dopamine (pg/mL) 0.122 (0.980) Systolic blood pressure (mmHg) 126.614 (794.495)
Eosinophils (103 cells/mcL) 1.762 (1.911) Temperature (C) 36.816 (0.777)
Epinephrine (pg/mL) 0.000 (0.002) Tidal Volume (mL) 507.246 (113.622)
Extubated (%) 82.7 TroponinT (ng/mL) 0.273 (1.198)
FiO2 (%) 29.1 (19.3) Urine output (ml) 86.182 (120.205)
Fibrinogen (mg/dL) 283.299 (77.511) Ventilator (%) 19.2 (39.4)
GCS Eye (NA) 3.790 (0.599) Weight (kg) 80.201 (21.920)
GCS Motor (NA) 5.855 (0.628) White blood cell count (109/L) 11.170 (8.531)
GCS Total (NA) 14.557 (1.596) pH (NA) 7.427 (1.811)
GCS Verbal (NA) 4.526 (1.138) pH Urine (NA) 6.104 (0.812)
Glucose (mg/dL) 134.444 (50.205) Age (years) 63.969 (17.605)
Heart Rate (#beats/min) 83.729 (16.979) Ethnicity 0 (Asian) 11.6%
Height 169.683 (6.837) Ethnicity 1 (Black) 2.5%
Hematocrit (%) 32.050 (5.262) Ethnicity 2 (Hispanic) 10.7%
Hemoglobin (gm/dL) 10.812 (1.871) Ethnicity 3 (Other) 3.5%
INR (NA) 1.376 (1.018) Ethnicity 4 (White) 71.5%
Lactate (mmol/L) 1.843 (1.181) Gender 0 0
Lactate Dehydrogenase (IU/L) 297.522 (417.274) Gender 1 (Female) 45.6%
Lymphocytes (NA) 19.108 (11.913) Gender 2 (Male) 54.3%
Magnesium (mmol/L) 2.044 (2.734) Gender 3 0
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TABLE VI: Complete Feature Set for Sepsis Dataset

Feature Mean (Std) Feature Mean (Std)

HR (beats per minute) 84.339 (17.044) Lactate (mg/dL) 0.598 (1.230)
O2Sat (%) 96.930 (3.572) Magnesium (mmol/dL) 1.748 (0.794)
Temp (Deg C) 36.520 (3.807) Phosphate (mg/dL) 2.359 (1.991)
SBP (mm Hg) 121.953 (26.734) Potassium (mmol/L) 3.903 (1.066)
MAP (mm Hg) 82.102 (16.751) Bilirubin total(mg/dL) 0.491 (1.892)
DBP (mm Hg) 51.670 (28.089) TroponinI (ng/mL) 1.059 (9.348)
Resp (breaths per minute) 18.912 (5.092) Hct (%) 29.965 (9.499)
EtCO2 (mm Hg) 2.712 (9.559) Hgb (g/dL) 9.96 (3.327)
BaseExcess (mmol/L) -0.081 (2.276) PTT (seconds) 18.439 (23.943)
HCO3 (mmol/L) 12.405 (12.464) WBC (count*103/µL) 10.347 (7.157)
FiO2 (%) 0.215 (0.274) Fibrinogen (mg/dL) 32.249 (103.411)
pH 3.509 (3.691) Platelets (count*103/µL) 192.579 (111.598)
PaCO2 (mmol/L) 18.645 (20.986) Age (Years) 62.145 (16.438)
SaO2 (%) 29.473 (43.734) Gender (F/M) 55.8%/44.2%
AST (IU/L) 50.892 (364.938) Unit1 (ICU unit (MICU)) 0.304 (0.460)
BUN (mg/dL) 21.176 (18.888) Unit2 (ICU unit (SICU)) 0.308 (0.461)
Alkalinephos (IU/L) 31.738 (76.607) HospAdmTime (Hours) -52.673 (139.169)
Calcium (mg/dL) 6.738 (3.423) Sofa O2 3.339 (1.161)
Chloride (mmol/L) 57.297 (52.772) Sofa MAP 0.218 (0.413)
Creatinine (mg/dL) 1.362 (1.758) Sofa Bilirubin 2.859 (1.716)
Bilirubin direct (mg/dL) 0.047 (0.575) Sofa Creatinin 0.776 (1.299)
Glucose (mg/dL) 125.480 (51.189) Sofa Platelets 0.658 (1.157)
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APPENDIX II
HYPERPARAMETERS

In our experiments, we set δ = 0.1, β = 10, γ = 5 respectively. These were obtained after evaluating the performance of
EXPERTNET for selecting values on the validation sets. Section III-A.8 has more details on sensitivity of EXPERTNET to
these hyperparameters. For DMNN and EXPERTNET, the autoencoder has 3 layers of sizes 128 − 64 − 20 − 64 − 128 and
a six-layered local predictor network of size 20 − 128 − 64 − 32 − 16 − 1. The local prediction networks use Softmax and
ReLU activation functions and are not regularized. For AC-TPC, we use the hyperparameters suggested by the authors found
using sensitivity analysis. The learning rate for EXPERTNET is set to 2e− 3. The predictor, selector, and encoder networks in
AC-TPC are FCNs with 64− 64, 64− 64, and 32− 32 neurons respectively. In UMAP, the parameters number of neighbors
and min dist (minimum distance apart that points are allowed to be in the low dimensional representation) are set to 15 and
0.1 respectively.

APPENDIX III
SENSITIVITY ANALYSIS

Figure 9 and 10 present sensitivity analysis plots for clustering performance measured by Silhouette (SIL) index and HTFD
scores. As expected, the clustering scores improve with increasing β (clustering loss weight) and decrease with increasing γ
(classification loss weight). The relationship of SIL and HTFD with δ is not linear. SIL and HTFD fall sharply at high value
of δ (δ > 50) but remain more or less consistent for other values. All experiments are averaged over 5-fold test sets.
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Fig. 9: Sensitivity Analysis on the ARDS dataset
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Fig. 10: Sensitivity Analysis on the Sepsis dataset

APPENDIX IV
SUBTYPING

We qualitatively analyze the subtypes (clusters) for k = 2 (Table VII). Tables VII(a) and VII(b) present the clinical variables
that are significantly different across the subtypes for ARDS and Sepsis respectively.

Visualization of the clusters demonstrates the discriminatory power of the learnt embeddings. Fig. 11a and 11g, for sepsis
and ARDS respectively, show the embeddings of the clusters and also depict the class labels within each cluster. We observe
that the clusters are well separated and within each cluster, there are members of both classes (those with and without the
diseases). Fig. 12 shows plots of 2D UMAP embeddings plots of Sepsis and ARDS data (in feature space) colored based on
clusters found by EXPERTNET for k = 2 (color coded Green for Cluster 1 and Pink for Cluster 2. Dark green and Dark Pink
points represent patients who get Sepsis/ARDS in their respective cohorts).
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TABLE VII: Clinical variables specific to subtypes in ARDS and Sepsis datasets for k = 2.

a) Clinical variables significantly specific to ARDS subtypes 1 and 2

Clinical Variables Mean or % Subtype 1 Mean or % Subtype 2
Cluster Details (|C1| = 5576,%D = 12.7) (|C2| = 10643,%D = 4.7)

Ventilator 0.538 ± 0.499 0.014 ± 0.116
Mean Airway Pressure 10.482 ± 3.038 13.0 ± 0.0
PIP 16.262 ± 7.129 12.0 ± 0.0
PEEP 4.217 ± 1.856 3.507 ± 0.143
Plateau Pressure 25.372 ± 5.041 28.0 ± 0.0
GCS Verbal 4.048 ± 1.608 4.779 ± 0.657
Systemic Vascular Resistance Index 1138.88 ± 379.591 1001.447 ± 29.097
FiO2 0.364 ± 0.233 0.253 ± 0.143
Ethnicity 3 0.103 ± 0.304 0.0 ± 0.017
Tidal Volume 519.973 ± 167.632 499.959 ± 4.867

(b) Clinical variables significantly specific to Sepsis subtypes 1 and 2

Cluster Details (|C1| = 11674,%D = 3.3) (|C2| = 10477,%D = 8.9)

pH 0.582 ± 1.994 6.74 ± 2.093
PaCO2 2.531 ± 9.809 36.571 ± 14.763
SaO2 0.93 ± 8.467 61.249 ± 45.248
FiO2 0.048 ± 0.145 0.401 ± 0.268
Sofa O2 4.0 ± 0.019 2.601 ± 1.354
Lactate 0.062 ± 0.324 1.187 ± 1.55
Chloride 38.75 ± 50.772 77.712 ± 47.061
Unit2 0.159 ± 0.365 0.478 ± 0.5
BaseExcess 0.062 ± 0.954 -0.213 ± 3.165
HCO3 9.153 ± 12.201 15.989 ± 11.769
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(a) Cluster and Labels (b) Chloride (c) FiO2

(d) HCO3 (e) HR (f) Unit2

(g) Cluster and Labels (h) Ventilator score (i) MAP

(j) PIP (k) Plateau Pressure (l) PEEP

Fig. 11: Top (a-f) for Sepsis, Bottom (g-l) for ARDS. (a) and (g) show the 2-dimensional UMAP embeddings in representation space depicting overall clusters
for k = 2 (color coded Green for Cluster 1 and Pink for Cluster 2. Dark green and Dark Pink points represent patients who get Sepsis/ARDS in their
respective cohorts.) Other figures show variation of selected features (from Table VII) for Sepsis (b-f) and for ARDS (g-l) data. Each point is color coded
according to the scale presented at the bottom (the minimum value is shaded blue while the maximum value is shaded yellow). Image best viewed in color.

(a) Sepsis Dataset (b) ARDS Dataset

Fig. 12: Plots of 2-dimensional UMAP embeddings of Sepsis and ARDS data (in feature space) colored based on clusters found by EXPERTNET for k = 2
(color coded Green for Cluster 1 and Pink for Cluster 2. Dark green and Dark Pink points represent patients who get Sepsis/ARDS in their respective cohorts).
Compare with Fig. 11 (a) and (g).
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APPENDIX V
RISK STRATIFICATION

Risk stratification across the subtypes differ for Sepsis and ARDS and with k as shown in Table VII. In the case of Sepsis, for
k = 2, in clusters 1 and 2, 5.7% and 6.5% develop sepsis respectively. In the case of ARDS, for k = 2 we observe that patients
in subtype 1 are more likely to develop ARDS (11.6% as compared to 4.7% for subtype 1). Note that the risk stratification
is inferred in an unsupervised manner, i.e., without explicitly adding a constraint for intra-cluster risk homogeneity. Figure 11
shows the distribution of significant variables across the two sub populations. Table VIII shows the variables that have the
highest predictive power for the two sub populations.

TABLE VIII: Top 10 most important features for ARDS and Sepsis prediction in for 2 clusters. Features common in two clusters are highlighted in yellow,
those common in three clusters are highlighted in blue, while the rest are unique to their respective clusters. |Ci| indicates the size of the ith cluster. %D
indicates the number of positive class labels, i.e., patients diagnosed with the disease (sepsis/ARDS), in the cluster.

ARDS Sepsis

|C1| = 5576 |C2| = 10643 |C1| = 11674 |C2| = 10477
%D = 12.7 %D = 4.7 %D = 3.3 %D = 8.9

GCS Verbal Platelets SBP Temp
GCS Eye White blood cell count Temp HospAdmTime
GCS Total Red blood cell count HospAdmTime SBP
Heart Rate Hematocrit WBC Age
PaO2 Urine output Glucose Resp
Temperature PTT Age HR
Platelets Temperature HR WBC
Age Mean blood pressure Hct Glucose
Extubated Respiratory rate Resp Platelets
Glucose Glucose BUN BUN
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APPENDIX VI
EXPERTNET COMPUTATIONAL COMPLEXITY

We derive the computational time complexity of Algorithm 1 in this section. To simplify the computations, we assume
that the EXPERTNET encoder, decoder, the k local networks have the same network architecture and the training algorithm
terminates after E epochs. Each neural network has L layers, each having sl number of neurons and trained on N points.

In line 3, the cluster centroids are computed by the k-means algorithm, thus the computational cost incurred is O(TKM ·kN)
assuming that it took TkM iterations for k-means to converge.

Computing matrices P and Q in line 4 incur a cost O(kN).

In line 8, forward propagations through the encoder incur a cost O
(
N · E

∑L
ℓ=1 sℓsℓ−1

)
.

In line 9-10, Training k local expert networks for Tsub sub-iterations for E main epochs incurs a cost of
O
(
N · E · Tsub · k

∑L
ℓ=1 sℓsℓ−1

)
In line 8, the total loss is backpropagated through the encoder, local networks and the decoder. The computational cost

incurred is O
(
N · E · (k + 2)

∑L
ℓ=1 sℓsℓ−1

)
Finally, in line 12, the cluster membership matrix P is updated in every epoch. The computational cost incurred is O(E ·NK).

Thus the total computational cost of training EXPERTNET is

= O

(
KN +N · E

L∑
ℓ=1

sℓsℓ−1 +N · E · Tsub · k
L∑

ℓ=1

sℓsℓ−1 +N · E · (k + 2)

L∑
ℓ=1

sℓsℓ−1 + E ·Nk

)

= O

(
N · E · (k + 3 + Tsub · k)

L∑
ℓ=1

sℓsℓ−1 + E ·Nk

)

= O

(
N · E · Tsub · k

L∑
ℓ=1

sℓsℓ−1 + E ·Nk

)
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APPENDIX VII
COMPARISON WITH DMNN

First we recall the architecture of DMNN DMNN consists of a neural network (embedding network) to embed input features,
followed by a softmax layer (gating) to indicate cluster membership. The feature embeddings are fed into k local classifiers
(k is the assumed number of clusters) which are trained with losses weighted by the gating values.

The authors themselves acknowledge the problems with this approach [27]: (a) The deep network can easily overfit leading
to poor generalization and (b) Gating mechanism may degenerate leading to all data points collapsing into a single cluster
(thus, no subtypes are found). Their solution to overcome these problems is to first train an autoencoder, use K-Means to
obtain cluster labels, then train the encoder to predict cluster labels. Thus a pre-trained encoder is used within DMNN to train
the local networks. Even with this approach, DMNN has poor clustering and classification results as shown in the ‘Original’
column of Table IX below (and Table I of our paper).

To further study the effects of training strategies in our method on DMNN, we perform the following experiments.
We made two modifications to DMNN to investigate their effects on performance:

1) We backpropagate the loss from local classifiers to the Encoder module (as opposed to the backpropagation to gating
network as mentioned in the original DMNN paper).

2) Next, we added the cluster balance loss (proposed in our paper) to their loss and trained DMNN.
The experiments follow the settings given in the paper (85:15 train-test split). We report averages over 5 folds for both Sepsis
and ARDS datasets, for k = 2, 3, 4, 5.

Table IX shows the results of DMNN (without any modifications) in column 1, with our two modifications above in columns
2 and 3 respectively. In the final column we show the results for EXPERTNET for comparison. Comparing columns 1 and 2,
we observe that backpropagating the loss from local classifiers to the Encoder module leads to improvement in performance.
But it comes at the cost of the degeneracy in gating mechanism i.e. the gating network tends to direct all data points to one
local classifier instead of distributing them amongst all the local networks.

On comparing columns 2 and 3 we see that incorporating the cluster balance loss mitigates the issue of empty clusters but
the overall prediction performance of EXPERTNET is still better than that of DMNN. This improvement may be attributed to
other differences in EXPERTNET such as DEC-based neural clustering and our novel cluster-weighted training strategy.

TABLE IX: Comparison of AUC, AUPRC and SIL scores for 1. DMNN, 2. DMNN with modification where we add
backpropagation to encoder, 3. DMNN with backpropagation and Cluster Balance Loss, 4. ExpertNet

Dataset k 1. DMNN (w/o Backprop) 2. w/ Backprop 3. Backprop+CBL 4. EXPERTNET

AUC AUPRC SIL AUC AUPRC SIL AUC AUPRC SIL AUC AUPRC SIL

ards24 2 0.733 0.267 0.000 0.797 0.312 0.0 0.709 0.213 0.283 0.785 0.291 0.404
ards24 3 0.796 0.311 0.076 0.795 0.317 0.0 0.609 0.162 0.153 0.766 0.28 0.423
ards24 4 0.796 0.314 0.000 0.798 0.31 0.0 0.623 0.162 0.103 0.772 0.284 0.373
ards24 5 0.794 0.301 0.085 0.71 0.26 0.077 0.589 0.126 0.017 0.784 0.29 0.244
sepsis24 2 0.698 0.253 0.000 0.73 0.305 0.0 0.849 0.372 0.319 0.861 0.426 0.649
sepsis24 3 0.838 0.376 0.000 0.845 0.374 0.0 0.745 0.232 0.274 0.854 0.414 0.635
sepsis24 4 0.849 0.389 0.000 0.845 0.383 0.0 0.686 0.19 0.204 0.853 0.418 0.623
sepsis24 5 0.838 0.360 0.000 0.85 0.387 0.091 0.669 0.188 0.153 0.847 0.409 0.668
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