
On the Learning Capabilities of Recurrent Neural
Networks: A Cryptographic Perspective

Shivin Srivastava
Dept. of Computer Science and Information Systems

Birla Institute of Technology and Sciences
Pilani, India

h2013073@pilani.bits-pilani.ac.in

Ashutosh Bhatia
Dept. of Computer Science and Information Systems

Birla Institute of Technology and Sciences
Pilani, India

ashutosh.bhatia@pilani.bits-pilani.ac.in

Abstract—It has been proven that Recurrent Neural Networks
(RNNs) are Turing Complete, i.e. for any given computable
function there exists a finite RNN to compute it. Consequently,
researchers have trained Recurrent Neural Networks to learn
simple functions like sorting, addition, compression and more
recently, even classical cryptographic ciphers such as the Enigma.
In this paper, we try to identify the characteristics of functions
that make them easy or difficult for the RNN to learn. We look
at functions from a cryptographic point of view by studying the
ways in which the output depends on the input. We use cryp-
tographic parameters (confusion and diffusion) for determining
the strength of a cipher and quantify this dependence to show
that a strong correlation exists between the learning capability
of an RNN and the function’s cryptographic parameters.

Index Terms—Recurrent Neural Networks; Cryptographic Ci-
phers; Confusion Parameter; Diffusion Parameter;

I. INTRODUCTION

Recently Deep Neural Networks, especially RNNs, have

become quite popular for their state-of-the-art performance

in many tasks like speech recognition, handwriting recogni-

tion/generation, image captioning etc. It has also been shown

that they can learn simple algorithmic tasks like sorting and

addition. Recently, it has been shown by Graydanus [1] that

Long Short Term Memory (LSTM) [2] based models can

even learn the decryption algorithm of classical cryptographic

ciphers like the Vigenere, Autokey and more famously the

Enigma cipher given the key and the ciphertext. This is a

quite significant discovery as tasks like sorting, searching and

addition are much easier to learn for humans as compared to

learning the Enigma. The Vigenere cipher was also considered

to be unbreakable for several centuries [3].

In one sense, the above breakthrough is not surprising since

RNNs were proven to be Turing complete back in 1992 by by

H. T. Siegelmann et. al. [4]. Given any computable function,

there exists a finite RNN (with suitable weights) that can

compute it. But this still does not shed any light on the

practical aspects of learning a function. More specifically, we

still do not know how fast our model will learn the function,

how many training samples it will need to see, will it learn

at all or not etc. All these questions clearly depend on the

particular algorithm which we are interested to learn. So the

real question is how to tell whether an RNN will be able

to learn an algorithm? More clearly, “Can we quantify the

learning capabilities of RNN on a given algorithmic task?”

In this paper, we try to answer the above question by

training RNN based models to learn various algorithmic tasks

like classical cryptographic ciphers and simple arithmetic

tasks like long, addition, long multiplication and arithmetic

modulus. We choose classical cryptographic functions as they

are computationally easy to evaluate and at the same time they

transform the input sequence in a non-trivial way.

We frame these algorithms as sequence-to-sequence trans-

lation tasks and use a single model with same topology and

hyperparameters to learn them. We quantify the property of

complexity of an algorithm by borrowing the concept of

confusion and diffusion from the theory of cryptographic func-

tions. We show that there exists a direct correlation between

the confusion and especially the diffusion parameter of an

algorithm and the learning capability of the RNN in-terms

of test accuracy, saturation time and the number of iterations

needed to achieve 95% accuracy (See section VI-D for an

explanation of these terms).

Since we are training our model on various ciphers, we

use the same model (Section V), parameters and problem

definition (Section III) as described by [1].

II. RELATED WORK

There have been many notable applications of Recurrent

Neural Networks, in particular those which have a Long Short

Term Memory (LSTM) to many interesting tasks such as

Speech Recognition [5], Handwriting recognition [6], Image

Captioning [7], Language Translation [8] etc. RNNs can find

general solutions to algorithmic tasks. Zaremba and Sutskever

[9] trained an LSTM to perform long addition of two 9-

digit numbers with 99% accuracy. In [10], Graves et. al.

introduced Neural Turing Machines (NTM) and compared

them with LSTMs on simple tasks like reading, writing and

repeated copying. In 2016, Graves et. al. [11] introduced,

Differential Neural Computer (DNC) which is an extension of

NTM combining attention mechanisms. It can solve problems

like relational reasoning over graphs. However, none of the

above works try to classify algorithms as easy and difficult

from the point of view of RNN.

162

2018 IEEE International Conference on Big Knowledge

978-1-5386-9125-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICBK.2018.00029

Some work has been done on breaking ciphers using Arti-

ficial Intelligence algorithms. Spillman et. al. [12] use genetic

algorithms to break a simple substitution cipher. Graydanus [1]

successfully learned the decryption mechanism of the Enigma

cipher using LSTMs. They also conduct the cryptanalysis of

Vigenere and Autokey ciphers using LSTMs. Although they

show that the Enigma cipher is much more difficult to learn

as compared to Autokey cipher which is more difficult than

the Vigenere cipher, they do not investigate further as to why

it is so. In this paper, we try to answer this very question.

III. PROBLEM SETUP

We view all the algorithms/functions from a cryptographic

perspective and use the general word ‘cipher’ for the same.

The first input sequence to the cipher consists of the plaintext

P concatenated with the key K. While the output sequence is

called the ciphertext C. The encryption function is denoted by

E. P,K,C are sequences consisting of characters belonging

to the alphabet Al(of length l). Our main objective is to train a

neural network with parameters θ to make the approximation

ÊNet(K,P, θ) ≈ E(K,P) such that:-

θ̂ = argminθL(ÊNet(K,P, θ)− E(K,P))

where L is the L2 loss function. E(K,P) is a one-hot encoded

vector and ÊNet is a real-valued softmax distribution over the

same space.

The long addition, long multiplication and arithmetic mod-

ulo operation are also modeled as a cipher with the first input

being called the plaintext while the second input takes the role

of the key. The ‘sort’ cipher does not use a key. It sorts the

string in alphabetic order.

The decryption process can be stated as P = D(C,K),
where C is the ciphertext (input), K is the key, P is the

plaintext (output) and D is the decryption function. P , K, and

C are sequences of symbols drawn from alphabet Al (which

has length l).
For addition cipher, the decryption function is arithmetic

subtraction while integer division is the decryption function

for multiplication. The modulo and the sort cipher have no

decryption function.

A. Representing Ciphers

We borrow the representation methodology used in [1] as

it works well in practice. A27 is chosen to be the uppercase

Roman alphabet plus the null symbol, ′−′. In addition to A27,

we also use the dictionary N11 which is the set of 10 Hindu-

Arabic numerals plus the null symbol, ′−′. Each symbol ai in

A27 or N10 is encoded as a one-hot vector. For computational

purposes, we restrict the size of P to be 20 while the length

of key K is varied from 1 to 6. We append the key phrase to

the target sequence due to empirical benefit found by [1].

We consider 8 ciphers which use A26 as their dictionary.

These are the Double Autokey, Double Vigenere, Autokey,

Vigenere, Columnar Transposition, Simple Substitution, Affine

cipher and the Sort cipher. These 8 ciphers are collectively

TABLE I: Diffusion and Confusion parameters

Cipher Diffusion Confusion
Double Autokey 0.158 0.32
Autokey 0.058 0.048
Affine 0.032 0.86
Columnar Transpose 0.032 0.36
Substitution 0.032 0.074
Vigenere 0.032 0.28
Double Vigenere 0.048 0.64
20-digit multiplication 0.559 0.457
20-digit modulo 0.213 0.412
20-digit addition 0.196 0.113
Sort 0.25 -

called cryptographic ciphers in the rest of the paper. A sample

input/output pair for the Vigenere cipher looks as following:-

input : KEYV--TWOBIRDSITTINGONTREE
output: KEYV--EBNXTWCDNSPTSFKYYQAP

The Double Vigenere and the Double Autokey ciphers employ

two keys and the input/output pairs for these ciphers are as

follows:-

input : KA-KB-TWOBIRDSITTINGONTREE
output: KA-KB-PZKEEUZVOLPWEQCRJWNHA

We also consider 3 ciphers which use N10 as their dictio-

nary. These are the 20-digit long addition, long multiplication

and the arithmetic modulo operation. These 3 are collectively

called as Arithmetic ciphers in the rest of the paper.

As will be explained in section VI-B, for the mult cipher

|C| ≤ |P | + |K| so we pad P with |K| extra null characters

(′−′) before hand only so that the length of plaintext and

ciphertext is same for the LSTM model. Similarly, for the add
cipher, we pad P with an extra ′−′ character as |C| ≤ |P |+1.

So a typical input/output pair for the add cipher looks as

following.

input : 1237657890-1234567891
output: -2472225781

IV. CONFUSION AND DIFFUSION PARAMETERS OF

DIFFERENT CIPHERS

In his seminal work on cryptography [13], Claude Shannon

introduced the concept of confusion and diffusion methods

to frustrate statistical attacks on the cipher. Generally, these

parameters are defined for ciphers which work at bit level.

An ideal cipher must have the avalanche effect property i.e.

if a single bit changes in the plaintext then the output should

change significantly (around half of the bits). Since we are

working with classical ciphers which work at character level,

instead of calculating the effect of a single bit change we study

the effect of changing a single character in the plaintext and

its resultant effect in the ciphertext. Now we describe in detail

the method of confusion and diffusion and how we calculate

them for the ciphers.

A. Confusion

Method of confusion is to make the relation between the

simple statistics of the ciphertext C and the simple description

of the key K a very complex one. Simply put, if the attacker

is trying to solve for the key after gathering certain statistics

163

from the cipher text C (eg. frequency counts), then the method

of confusion dictates that every statistic must depend on all

parts of the key space so that it is not easy to solve for the

key.

In our paper, we calculate the confusion parameter (χ) of a

function E by generating a random pair of plaintext and key,

(P,K) and finding the ciphertext C = E(P,K). Then we

choose a random position in K and exchange the character

at that position with a different character from the dictionary,

we get the modified key K ′. The modified ciphertext C ′ is

calculated as C ′ = E(P,K ′). We use the Levenshtein distance

(L) [14] to calculate the dissimilarity between C and C ′. Thus

we get χ(E) = L(C,C′)
|P | . This procedure is repeated for a large

number of randomly generated (P,K) pairs to estimate the

true value of the χ(E).

B. Diffusion

The method of diffusion is meant to dissipate the statistical

structure of P which causes redundancy, into long range statis-

tics i.e. into statistical structure involving a long combination

of letters in the ciphertext. Generally this is achieved by

making every block in C depend on many blocks in P . So

even if some blocks have a statistical correlation with each

other, since we are involving many other blocks of P , it is

hoped that the structure is diffused.

We calculate the diffusion parameter (Δ) by generating a

pair of key and plaintext, (P,K) and finding the ciphertext

C = E(P,K). The diffusion parameter is thus calculated as

Δ(E) = L(P,C)
|P | . This procedure is repeated for a large number

of randomly generated (P,K) pairs to estimate the true value

of Δ(E).
Table I, shows the Confusion and Diffusion parameters for

various ciphers after averaging over 1000 different (P,K)
pairs. We fix |P | = 20 and 1 ≤ |K| ≤ 6. There are

two exceptions to the key size though, for the Affine cipher

|K| = 2 while for the Substitution cipher |K| = 26 (see

section VI-B). All ciphers except the three arithmetic ciphers

sample P and K from A26. The arithmetic ciphers use N10

as dictionary.

V. LEARNING MODEL ARCHITECTURE

The standard RNN cell maps an input sequence x =
(x1, ..., xT) to an output vector sequence y = (y1, ..., yT) by

using hidden states h = (h1, ..., hT) and iterating through the

following equations from t = 1 to t = T :

ht = H(Wxhxt +Whhht−1 + bh)

yt = Whyht + by

W denotes the weight matrices and b denotes the bias vectors.

H is the hidden layer function and T is the length of input

sequence.

H is frequently chosen to be the Long-Short-Term-Memory

(LSTM) architecture which used built-in memory cells to store

information. The memory vector ct can be read, written to or

reset at each time step. Thus the LSTM update takes the form:-

Fig. 1: RNN based model unrolled for three time steps

⎛
⎜⎜⎝

i
f
o
g

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
sigm
sigm
sigm
tanh

⎞
⎟⎟⎠W l

(
hl−1
t

hl
t−1

)

clt = f · clt−1 + i · g
hl
t = o · tanh(clt)

i,o and f are 3 gate vectors which decide whether the

memory is updated, reset to zero or whether it is shown

to the hidden vector respectively. The entire LSTM cell is

differentiable allowing us to calculate its gradient function, and

the three gating functions are helpful in reducing the problem

of vanishing gradients ([15] and [16]).

We use a similar architecture as used in [1], where a single

LSTM cell is capped with a fully connected softmax layer.

In all experiments our LSTM network has 512 hidden layer

nodes. It was observed that increasing the number of layers

leads to very slow learning.

VI. EXPERIMENTAL ANALYSIS

In this section, we verify the validity of our claims.

We consider eleven different ciphers and train the LSTM

model to learn the same. They include eight classical cryp-

tographic ciphers and three arithmetic cipher as shown in

Table I. The model of the Neural Network is as described

in section V. All code for this project can be found on

https://github.com/shivin9/crypto-rnn.

A. Test Setup

We perform all experiments on a Windows 10 workstation

which has Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz pro-

cessor with 32 GM RAM. We write our programs in Python

using Google’s TensorFlow library. The workstation has two

Nvidia Quadro K620 GPUs which provide significant speedup

during training.

The model is trained using the minibatch stochastic gradient

descent algorithm with a constant learning rate of 5 × 10−4.

Every minibatch contains 64 training data samples. Every data

164

sample consists of a 6-character long key and a 20-length long

plaintext. We use Xavier initialization to initialize the weights

of the network. Since, we generate training samples on the

fly, the model sees each training data sample only once. We

take this approach due to two reasons:- 1) The model needs

a large dataset in the training stage (≈ 107), so it is cheaper

to generate the data on fly instead of storing and loading it

into the memory repeatedly. 2) We want to train our model to

learn the algorithm and not unrelated patterns between input

and output. So, if it sees a (P,C) pair only once, then there

is no chance of overfitting.

In all experiments, we report the test error by evaluating

our model on 100 data samples and taking their average.

The test accuracy is defined as the dot-product of one-

hot representations of prediction and ground truth over all

the characters in a sentence divided by the total number

of characters. Accuracy between two words is defined as

Acc(y, ŷ) = y · ŷ =
∑26

i=1 yiŷi. It is calculated after every

500 minibatches and one training iteration consists of 100

minibatches. We train our model until it achieves 95%+
accuracy or trains for 150, 000 steps.

B. Ciphers

We briefly describe the different ciphers which we learn

using the LSTM model.

1) Vigenere Cipher: Vigenere cipher is one of the most

famous polyalphabetic substitution cipher. It shifts the plain-

text characters by an amount decided by the key. This makes

it harder to do a frequency analysis of the ciphertext. It can

represented mathematically as follows :- C[i] = A[(P [i] +
K[i mod z]) mod Al] where z = |K| and Al is the dictionary.

2) Autokey Cipher: Autokey cipher is a more sophisticated

version of the Vigenere cipher where the key is used to

only once. After the first |K| message characters have been

encrypted using the key, the plaintext is itself appended to the

key and is used to encrypt further characters using substitution.

3) Affine Cipher: Affine cipher is a sophisticated form of

Caesar cipher which just creates the substitution table in a

more clever way by using a simple linear equation of the form

P [i] = (a ∗ C[i] + b)modAl where Al is the dictionary. The

key K consists of only two characters generally represented as

(a, b). It can be easily shown that a can only take 12 distinct

values while b can take all 26 values.

4) Columnar Transposition cipher: Transposition ciphers

change the positioning of characters in the plaintext instead

of changing them directly. The plaintext is wrapped around a

key after padding. Then the letters of the key are sorted along

with the columns of plaintext. Ciphertext is basically obtained

by reading the characters along the rows.

5) Substitution Cipher: Substitution cipher maintains a

table which substitutes a plaintext character with a fixed

character. The key K is a 26 characters long permutation of

A with a character at position i being substituted with K[i].

6) Double Vigenere Cipher: The Double Vigenere Cipher

encrypts P twice with the Vigenere cipher using two different

TABLE II: Learning parameters of the model for cryptographic

ciphers

Cipher(E) Δ(E) χ(E)
Test
Accuracy

Sat.
Time

95%
Mark

Sort 0.25 NA 48.5 945 NA
Double Autokey 0.158 0.32 16.7 0 NA
Autokey 0.087 0.048 100.0 295 290
Affine 0.048 0.86 98.94 230 170
Double Vigenere 0.048 0.64 98.94 2665 2340
Col. Trans. 0.048 0.36 64.66 250 NA
Vigenere 0.048 0.28 99.56 155 125
Simple Substitution 0.047 0.074 95.66 1625 1635

TABLE III: Learning parameters of the model for arithmetic

ciphers

Cipher(E) Δ(E) χ(E)
Test
Accuracy

Sat.
Time

95%
Mark

Mult 0.559 0.457 67.99 945 NA
Mod 0.213 0.412 85.14 5 NA
Add 0.196 0.113 95.81 165 175

keys K1 and K2. It is actually equivalent to a single Vigenere

cipher which has a key of length lcm(|K1|, |K2|).
7) Double Autokey Cipher: The Double Autokey Cipher

encrypts P twice using the Autokey cipher(E). It also employs

two keys K1 and K2. In our paper we bound the length of

both the keys by 3.

8) Arithmetic Ciphers: The Arithmetic ciphers sample P
and K from N10 and apply the appropriate arithmetic op-

eration ie. +, ∗ or %. The mult cipher converts P and K
into integers and then multiplies them normally to get the

ciphertext. For brevity we show it as C = P ×K. In a similar

way the operators are also applied.

Note that unlike the cryptographic ciphers the Arithmetic

ciphers change the length of the ciphertext. In case of mult,

|C| ≤ |P | + |K|. In case of add, |C| ≤ |P | + 1 and in case

of mod, |C| ≤ |K|. Similar to other ciphers we fix |P | = 20
and |K| ≤ 6.

9) Sort Cipher: The sort cipher simply sorts P in alpha-

betical order. There is no key involved.

C. Datasets

We choose to generate training data samples on the fly as

the execution time of E(P,K) is very low for all ciphers.

This reduces the chances of overfitting as it’s highly unlikely

that a single data point is seen more than once by the model.

We used the famous Python package, PyCipher [17] for

implementations of the Affine, Columnar Transposition and

the Simple Substitution cipher. We implemented our own

versions of the Autokey, Vigenere, Double Autokey, Double

Vigenere, Arithmetic and Sort cipher.

The symbols of P and K are sampled randomly (with uni-

form probability) from A26, the Roman Alphabet. Choosing

characters randomly ensures that the model learns the cipher

function and not the statistical distribution of English language

or the common n-grams.

165

Fig. 2: Linear Regression Fitting of Test Accuracy as a function of Δ and χ parameters for (a) cryptographic ciphers; (b)

arithmetic ciphers

D. Discussion

In this section we analyze the model on the following

learning parameters:- final Test Accuracy, Saturation Time
and 95%-mark while learning different ciphers. Saturation

Time is defined as number of iterations needed to achieve

an accuracy within 1% of maximum. 95%-mark denotes the

number of iterations needed to reach 95% accuracy. The final

test accuracy helps us judge the overall performance of the

model while the Saturation Time helps us gauge the speed

with which the model is learning the function and also the

point at which its performance stabilizes. We don’t use the

maximum accuracy for this measure as the model may achieve

maximum performance arbitrarily long after stabilizing.

The results are summarized in tables II and III. We have

separated the results of Arithmetic and Cryptographic ciphers

as they are learned for different dictionaries of different sizes.

Both the tables are sorted by decreasing values of diffusion

parameters of different ciphers.

In Table III, we can see a clear gradation in the learning

parameters as a function of Δ(E) and χ(E). As Δ(E)
increases, the Accuracy of the model decreases. The Add
cipher is learned much better than the Mult and Mod cipher.

The saturation time highlights a different phenomenon though,

the model saturates quickly while learning the Mod cipher and

it achieves a decent accuracy also. The model takes much more

time to learn the Mult cipher and in the end its not able to

learn it fully also. Thus, we can conclusively say that Mult
cipher is tougher to learn as compared to the Mod and Add
ciphers.

Table II on the other hand shows more interesting results.

The Sort cipher and the Double Autokey cipher clearly

follow the Δ/χ hypothesis when compared to other ciphers,

although they do not follow it amongst themselves. The

saturation times of both ciphers tells that although the model

tried to learn the sort cipher it couldn’t get much far even

after a long effort. But the Double Autokey cipher remains a

mystery for our model as it saturates in the very beginning

only. Except for the Columnar transposition cipher, the model

learns all other ciphers almost fully.

Simple Substitution cipher appears to not obey this rule,

but we suspect that this is probably because it’s key is the

whole permutation table which is 26 characters long. For other

ciphers, their keys are at most 6 characters long.

The only real outlier to the Δ/χ hypothesis is the Columnar

Transposition cipher whose cryptographic parameters match

the Vigenere cipher but is actually much difficult to learn

in practice. We suspect that they are some other function

parameters, unknown to us, which make the Columnar Trans-

position cipher difficult to learn. Another observation is that

the model finds composition ciphers (Double Vigenere and

Double Autokey) more difficult to learn as compared to the

single ciphers even though they have similar cryptographic

parameters. This suggests that the model finds difficulty in

learning a composition of functions rather than a stand-alone

function even though the key lengths for both are same.

The confusion parameter does not play a very major role

in increasing the learning complexity of the cryptographic

ciphers. But it does seem to act as the tie-breaker in cases

where two algorithms match in their diffusion parameters.

For example consider the Double Vigenere and the Vigenere

cipher. The diffusion parameter for both is 0.048 but their

confusion-parameters vary considerably. Consequently it is

observed that the Double Vigenere cipher is much harder to

learn as compared to the Vigenere cipher. Similarly the Affine

and Vigenere cipher also follow this rule. Although, the model

learns both Vigenere and Autokey ciphers fully, it learns the

former much more quickly than the later as supported by our

hypothesis.

166

To further strengthen the validity of the Δ/χ hypothesis,

Figure 3 gives the heat map representation of table II which

shows a pairwise comparison of the learning complexities of

the cryptographic ciphers. If the predictions match the results

obtained in the experiments, we color the box green, otherwise

red. Cipher E1 is termed more complex than cipher E2 if the

final accuracy of the LSTM model on E1 is significantly less

(> 5%) than that on E2. In case of tie, we compare using the

saturation time.

To determine the weight of Δ and χ parameters respectively

on the final accuracy achieved by the model, we fit the data

in table II using a linear regression model. The final equation

we get is Accuracy = −330.9 × Δ + −14.84 × χ + 113.

So the Δ parameter is around 22 times more significant than

the χ parameter in deciding the learning complexity of the

cryptographic ciphers. Figure 2(a) shows that the test accuracy

does have a direct relationship (weakly linear with an R2

value of 0.58) with the confusion and diffusion parameters

of a cipher.

Similarly for table III, we get the following dependence

of Test Accuracy on Δ and χ parameters:- Accuracy =
−45.26×Δ+−33.11×χ+108.4. The confusion parameter of

Arithmetic ciphers is almost equally significant in determining

its learning complexity. Figure 2(b) further strengthens the

hypothesis that the Test Accuracy is a linear function of the

cryptographic parameters of the arithmetic ciphers. Of course

we will need more samples to strengthen this fact.

Fig. 3: Heat Map making a pairwise comparison between

algorithms

VII. CONCLUSIONS AND FUTURE WORK

In this work, we explore the relationship between a func-

tion’s cryptographic (confusion and diffusion) parameters, and

the capability of an RNN model to learn it when trained with

valid input/output pairs. The experiments strongly suggest that

confusion and diffusion parameters certainly reduce the learn-

ing capabilities of the 1-layer RNN model. However, there are

some exceptions to our hypothesis, we thus suspect there there

are certain other properties possessed by sequence-to-sequence

functions which also restrict the RNN’s generalization powers.

In our view this work is just the beginning of what can

become a fruitful technique for shedding light on the black-

box nature of deep neural networks. Future works can focus

on finding out more parameters inherent to functions which

influence the learning capabilities of RNNs. The validity of

the Δ/χ hypothesis can also be tested on different network

architectures.

VIII. ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their helpful

comments.

REFERENCES

[1] S. Greydanus, “Learning the enigma with recurrent neural networks,”
arXiv preprint arXiv:1708.07576, 2017.

[2] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget:
Continual prediction with lstm,” 1999.

[3] “A new cipher code,” Scientific American v.83 suppl. 1917, pp. 61–62,
1917.

[4] H. T. Siegelmann and E. D. Sontag, “On the computational power of
neural nets,” Journal of computer and system sciences, vol. 50, no. 1,
pp. 132–150, 1995.

[5] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645–6649.

[6] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[7] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp. 3128–3137.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[9] W. Zaremba and I. Sutskever, “Learning to execute,” arXiv preprint
arXiv:1410.4615, 2014.

[10] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv
preprint arXiv:1410.5401, 2014.

[11] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, p. 471, 2016.

[12] R. Spillman, M. Janssen, B. Nelson, and M. Kepner, “Use of a
genetic algorithm in the cryptanalysis of simple substitution ciphers,”
Cryptologia, vol. 17, no. 1, pp. 31–44, 1993.

[13] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[14] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[17] J. Lyon, “Pycipher,” 2014. [Online]. Available:
https://github.com/jameslyons/pycipher

167

