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Abstract

In data containing heterogeneous subpopulations,
classification performance benefits from incorpo-
rating the knowledge of cluster structure in the
classifier. Previous methods for such combined
clustering and classification are either 1) classifier-
specific and not generic, or 2) independently per-
form clustering and classifier training, which may
not form clusters that can potentially benefit classi-
fier performance. The question of how to perform
clustering to improve the performance of classifiers
trained on the clusters has received scant attention
in previous literature, despite its importance in sev-
eral real-world applications. In this paper, we de-
sign a simple and efficient classification algorithm
called Clustering Aware Classification (CAC) to
find clusters that are well suited for being used as
training datasets by classifiers for each underlying
subpopulation. We also develop a deep learning
method for simultaneous clustering and classifica-
tion, DEEPCAC. Our experiments on synthetic and
real benchmark datasets demonstrate the efficacy
of CAC and DEEPCAC over previous methods for
combined clustering and classification.

1 INTRODUCTION

Many real datasets have complex underlying structures such
as clusters and intrinsic manifolds. For classification tasks
on such data, linear classifiers fail to learn well because
of the inherent non-linear data distribution. Non-linear
classifiers such as (deep) neural networks perform well
in such cases, but often require large training data sets to
achieve good generalization. When clusters are found or
suspected in the data, it is well known that classification
performance benefits from incorporating knowledge of such
cluster structure in the model, for both linear and non-linear

classifiers [1, 2, 3, 4].

As an example, consider the problem of predicting the risk
of a disease using patients’ clinical data. Patient popula-
tions, even for a single disease, show significant clinical
heterogeneity. As a result, subpopulations (called subtypes)
having relatively homogeneous clinical characteristics can
often be found in the data. Models that do not consider
underlying subtypes may be consistently underestimating
or overestimating the risks in specific subtypes [5], and
risk models that account for subtypes have been found to
be more effective [6, 7, 4, 8]. Similar examples illustrate
the benefit of clustering to build classifiers in, e.g., image
processing [9, 10] and natural language processing [11].

Previous works on using clustering for classification broadly
fall into two categories. The first group of techniques modify
specific classification techniques to account for the under-
lying clusters, e.g., Clustered SVMs [2]. These techniques
are closely tied to the modified classifier and inherit both its
modeling strengths and weaknesses. The second and more
common approach is to first cluster the data and then inde-
pendently train classifiers on each cluster. Although simple
and intuitive, such a ‘cluster-then-predict’ approach may
not form clusters in a manner that benefits the performance
of classifiers trained on those clusters. This is also a limi-
tation of techniques in the second group where clustering
and classifier training occur independently. To the best of
our knowledge, the question of performing clustering to im-
prove the performance of classifiers trained on the clusters
has not been addressed by previous literature.

Thus, in this paper, we first investigate the fundamental
question of when and how clustering can help in obtaining
accurate classifiers. Our analysis yields novel insights into
the benefits of using simple classifiers trained on clusters
compared to simple or complex (in terms of Rademacher
complexity [12]) classifiers trained without clustering. It pro-
vides clues on when such a clustering-based approach may
not improve the subsequent classification. Finally, it also
motivates the design of our clustering-based framework for
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classification, called Clustering Aware Classification (CAC).

The CAC framework can be viewed as a classification algo-
rithm that, by design, finds clusters that are intended to be
used as training datasets by the (base) classifiers of choice
e.g., Logistic Regression (LR), SVM or Neural Networks.
The key idea of our approach is to induce class separability
(polarisation) within each cluster in addition to dividing the
data for better classification. This is effected by designing
a cost function that can be used within the optimization
framework of k-means. However, finding clusters with this
cost function using the popular Lloyd’s algorithm may not
guarantee convergence. Therefore, we design an approach
based on Hartigan’s method [13] and prove that it converges.
Our design is generic and not classifier-specific, and leads
to an efficient iterative method to find the clusters. We also
theoretically investigate the benefits offered by class separa-
tion to classifiers employing the standard log-loss function.
We prove that the upper and lower bounds for the standard
training log-loss of a dataset are linearly dependent on class
separation within the dataset. We analyze the sensitivity of
CAC to various data characteristics such as class separa-
tion, intercluster distance, and the number of clusters using
synthetic data. Motivated by the idea of exploiting class
separation in data, we formulate DEEPCAC, a deep variant
of CAC that not only encourages clusters with high class
separation but also induces class separability in clusters
by training a neural network to find such representations.
Finally, we empirically study the performance of CAC on
benchmark datasets, including a large clinical dataset. In
summary, our contributions are:

1. Our theoretical analysis provides insights into the funda-
mental question of how clustering can aid in potentially
improving the performance of classifiers trained on the
clusters.

2. We design a novel clustering algorithm, Clustering
Aware Classification (CAC) to find clusters in data with
the aim of improving the performance of classifiers
trained on the clusters. CAC is simple, efficient, and
provably convergent. It can be used with any classifier.

3. We develop a model for simultaneous clustering and
classification through a Deep Learning based variant of
CAC, DEEPCAC that supports multi class data also.

4. Our experimental results on benchmark datasets includ-
ing a large clinical dataset, show that CAC and DEEP-
CAC yield higher improvement in classification perfor-
mance compared to previous approaches for combined
clustering and classification.

REPRODUCIBILITY: Our code and datasets are publicly
available at this anonymous link.

2 RELATED WORK

The idea of training multiple local classifiers on portions
of the dataset has been extensively studied for specific clas-
sifiers [14, 15, 16, 17, 18, 19, 20, 21]. For instance, [22]
presents a novel locality-sensitive support vector machine
(LSSVM) for the image retrieval problem. Locally Linear
SVM [23] has a smooth decision boundary and bounded cur-
vature. Its authors show how functions defining the classifier
can be approximated using any local coding scheme. [24]
proposes Mixed SVMs which partition the feature space
into subregions of linearly separable data points and learn
a Linear SVM for each of these regions. [2] proposes Clus-
tered Support Vector Machines (CSVMs) which tackles the
problem in a divide-and-conquer manner, thus avoiding the
need for computationally expensive kernel SVMs. CSVM
groups the data into several clusters, after which it trains
a linear SVM in each cluster to separate the data locally.
Additionally, it imposes a global regularization, that aligns
the weight vectors of each locally linear SVM with a global
weight vector.

There are other related works, which aim to find suitable rep-
resentations of raw data such that the performance in down-
stream prediction tasks is better when they use the learned
embeddings. Large Margin Nearest Neighbour (LMNN)
[25] introduces the much-celebrated triplet loss. In this work,
the authors find a data-specific Mahalanobis distance embed-
ding for the data, subject to the constraint that k similarly
labeled points are mapped in the neighborhood of every
point. The transformed data is more amenable for a k Near-
est Neighbour classifier to work with. [26] extends LMNN
to make it parameter-free. Recently, there has been a surge
of interest in contrastive learning [27, 28] as well where the
core idea is to group similar/dissimilar representations of
data into similar/dissimilar groups. The latent representa-
tions thus generated are beneficial to supervised classifiers
in classification tasks.

Some Bayesian approaches have been developed for com-
bined classification and clustering, e.g., [1, 29] but they
are computationally expensive. To the best of our knowl-
edge, closest and most recent work in spirit and purpose
to our work is Deep Mixture Neural Network (DMNN)
[4]. DMNN consists of an embedding network with gat-
ing and a user-defined number of local predictive networks.
It proposes simultaneous patient subtyping and risk pre-
diction. The gating network computes high-level feature
representations of raw input features, which are then clus-
tered to find patient cohorts. Local predictor networks are
then trained to predict the outcomes for their respective
cohorts. The subgroup-specific sets of features learned by
the local features provide valuable information from which
we can reason about the cluster phenotype. Thus, DMNN
represents ‘cluster-then-predict’ type of approach as it uses
local predictor networks to classify subpopulations in the
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data.

3 PROBLEM STATEMENT

Let X = (x1, x2, · · · , xN ) be a training dataset with n
records xi ∈ Rd together with binary labels yi ∈ {0, 1}.
Given an integer k ≥ 1, our goal is to:

1. Divide X into k non-empty, distinct clusters C =
{C1, C2, · · · , Ck}, and

2. Obtain a collection of k classifiersF = {f1, f2, · · · , fk}
where each fj : Cj → {0, 1}|Cj | is
trained on all xi ∈ Cj with the objective
argminF,C

∑k
j=1

∑
i∈Cj

ℓ(fj(xi), yi).

There is no restriction on the choice of the classifier, which
is determined apriori by the user.

4 CAN CLUSTERING AID
CLASSIFICATION?

We provide a principled motivation behind our clustering
approach by analysing when clustering can potentially
help in obtaining accurate classifiers. Our analysis yields
crucial insights into developing the CAC framework.
Fix j ∈ {1, . . . , k} and let Sj = {(xi, yi)}

mj

i=1 be the
training dataset from the j-th cluster (having mj points)
with x ∈ Xj and y ∈ Yj s.t. Xj = {x : x ∈ Cj} and
Yj = {y : y ∈ Cj}. Then, the following theorem — a direct
application of a previous result [30, 12] to our problem —
suggests a potential benefit of clustering in terms of the
expected error Ex,y[ℓ(f(x), y)] for unseen data:

Theorem 1. (Proof in Appendix A.1). Let Fj be a set of
maps x 7→ f(x), and the function q 7→ ℓ (q, y) be a λ-
uniformly bounded function for any q ∈ {f(x) : f ∈
Fj , x ∈ Xj} and y ∈ Yj . Then, for any δ > 0, with proba-
bility at least 1− δ over an i.i.d. draw of m i.i.d. samples
((xi, yi))

m
i=1, the following holds: for all maps f ∈ Fj ,

Ex,y[ℓ(f(x), y)] ≤
1

mj

mj∑
i=1

ℓ(f(xi), yi)+

2Rmj (ℓ ◦ Fj) + λ

√
ln(1/δ)

2mj
, (1)

where

Rmj (ℓ ◦ Fj) := ES,σ[ sup
f∈Fj

1

mj

mj∑
i=1

σiℓ(f(xi), yi)]

and where σ1, . . . , σmj are independent uniform random
variables taking values in {−1, 1}.

Theorem 1 shows that the expected error Ex,y[ℓ(f(x), y)]
for unseen data is bounded by three terms: the training

error 1
mj

∑mj

i=1 ℓ(f(xi), yi), the Rademacher complexity
Rmj

(ℓ ◦ Fj) of the set of classifiers Fj on the j-th cluster,
and the last term O(ln(1/δ)/2mj) in equation (1). To apply
Theorem 1 to models without clustering, we can set the j-th
cluster to contain all the data points with mj = N .

The upper bound can be used to analyze the benefit of
using a simple model (e.g., a linear model) with clustering
compared to two cases of (1) a simple model and (2) a
complex model (e.g., a deep neural network), both without
clustering. For a simple model without clustering, the
training error term 1

mj

∑mj

i=1 ℓ(f(xi), yi) in equation (1)
can be large, because a simple model may not be able
to sufficiently separate training data points (underfitting)
to minimize the training error. In the case of a complex
model without clustering, the training error can be small
but the Rademacher complexity Rmj

(ℓ ◦ Fj) tends to
be large. A simple model with clustering can potentially
trade-off these by minimizing the Rademacher complexity
Rmj (ℓ ◦ Fj) while making the training data in the cluster
to be linearly separable to minimize the training error
1
mj

∑mj

i=1 ℓ(f(xi), yi). This observation leads us to explore
ways to induce class separability in data clusters.

Theorem 1 also shows that such a clustering-based approach
may also not help in some cases in improving classification.
Using the clustering approach decreases the value of m and
thus increases the last term O (ln(1/δ)/2m) in Equation
(1), when compared with models without clustering.
Therefore, using a simple model with clustering can be
potentially advantageous when the first and second terms
in Equation (1) are dominant, but may not be beneficial if
the last term is dominant.

Since large m reduces both the second and third terms,
unsurprisingly, larger sample sizes may lead to improved
performance. The theorem shows that simple models within
each cluster may lead to good generalization due to smaller
values in the first two terms. It thus motivates the formation
of clusters, each of which can be linearly separable internally
with respect to the classes. We observe the implications of
Theorem 1 in Section 7 in our empirical results.

5 CAC

In this section, we develop our framework Clustering Aware
Classification (CAC). It can be viewed as a classification
algorithm that by design finds clusters that are intended to be
used as training datasets by classifiers. The key idea of our
approach is to induce class separability within each cluster.
If the points of different classes are well separated within a
cluster, then it naturally aids any classifier in determining
the class boundaries. We now describe the CAC algorithm.



5.1 CLASS SEPARABILITY

We use a simple heuristic to measure class
separability within each cluster. For each clus-
ter Cj (j ∈ [k]), we define: cluster centroid:
µ(Cj) := |Cj |−1

∑
x∈Cj

xi, positive centroid:
µ+(Cj) := (

∑
xi∈Cj

yi)
−1

∑
xi∈Cj

yixi, and negative cen-
troid: µ−(Cj) := (

∑
xi∈Cj

(1− yi))
−1

∑
xi∈Cj

(1− yi)xi.

Class separability is defined by considering the distance
between positive and negative centroids within each cluster.
Figure 1 shows two clusters C1 and C2. C1 has greater class
separation while in C2, the data points are more intermin-
gled and thus their centroids are closer. Thus, ∥µ+

1 −µ−
1 ∥ >

∥µ+
2 − µ−

2 ∥.

5.2 CLUSTERS WITH CLASS SEPARABILITY

To induce our notion of class separability within cluster-
ing we consider the k-means clustering formulation that
is widely used for its simplicity, effectiveness, and speed.
Clusters using k-means are obtained by minimizing the
size-weighted sample variance of each cluster: D(X) =∑k

p=1 infµ(Cp)∈X

∑
i∈Cp

∥xi − µ(Cp)∥2.

Thus, the cost of each cluster, given by
∑

i∈Cj
∥xi −

µ(Cj)∥2, is minimized. To induce class separability, a nat-
ural formulation is to add a cost with respect to class sepa-
rability for each cluster. With our measure for class separa-
bility, and α > 0 as a class separation hyperparameter, this
becomes:

ϕ(Cj) =
∑
i∈Cj

(
∥xi − µ(Cj)∥2 − α · ∥µ+(Cj)− µ−(Cj)∥2

)
(2)

Defining the cost function in this manner encourages the
decrease of cluster variance term and increase of the class
separability term, weighted by α. Consequently, the overall
cost function is defined to be ϕ({Cj}k1) :=

∑k
j=1 ϕ(Cj) as

the unsupervised loss of CAC that we aim to minimize.

5.3 FINDING THE CLUSTERS

The most common heuristic to find k-means clusters is
Lloyd’s Algorithm [31]. It begins with an initial clustering
and iteratively computes cluster centroids and assigns points
to clusters corresponding to their closest centroids. However,
using this heuristic with our proposed cost may not guar-
antee convergence. (See our discussion after Theorem 2).
Instead, we adopt an approach based on Hartigan’s method
[13]. For k-means clustering, Hartigan’s method proceeds
point by point in a greedy manner. Each point is reassigned
to a cluster such that the overall cost is reduced.

In our setting, denote the cost of merging a point x to some
cluster Cq as Γ+(Cq, x) = ϕ(Cq ∪ {x}) − ϕ(Cq). Sym-
metrically, denote the cost of removing a point x from
some cluster Cp as Γ−(Cp, x) = ϕ(Cp \ {x}) − ϕ(Cp).
Consequently, define the improvement in cost by mov-
ing a point x ∈ Cp from cluster Cp to cluster Cq to be
Φ(x;Cp, Cq) := Γ+(Cq, x) + Γ−(Cp, x). The exact ex-
pressions for Γ+(Cq, x) and Γ−(Cp, x) w.r.t x, µ, µ± are
derived in Appendix A.3.

Our approach is summarized in Algorithm 1. It begins with
an initial clustering (k-means found clusters) and then pro-
ceeds iteratively in rounds. In each round, all points are
checked to determine if a point has to be re-assigned to
another cluster. For a point in the current iteration, xi, if
moving xi ∈ Cp would result in Cp/xi having points of
only one class, then it is not moved. If not, the cluster Cq

that results in the maximum decrease in cost Φ(xi;Cp, Cq)
is found and xi is moved from its current cluster Cp to Cq .

In each round, all three centroids for each cluster are up-
dated and once the loss function has become stagnant, the
algorithm is considered to have converged. Base classifiers
are then trained on the clusters found and are used for pre-
dicting labels for the unseen test data.

Algorithm 1: CAC

Input: Training Data: X ∈ Rn×d, binary labels
yn×1 ∈ {0, 1}n, {Cj}k1 , {fj}k1 and α

1 ▷ Initialization
2 Compute

µ(Cj), µ
+(Cj), µ

−(Cj) ∀ Cj s.t. j ∈ {1, · · · , k}.
3 ▷ Algorithm
4 while not converged do
5 for i ∈ {1 . . . n} do
6 if Removing xi ∈ Cp from its cluster does not

lead to a 1-class cluster then
7 ▷ Assign new cluster to xi

8 Let q := argminj Φ(xi;Cp, Cj) (breaking
ties arbitrarily).

9 if Φ(xi, Cp, Cq) < 0 then
10 Assign xi to Cq from Cp and update

µ(Cp), µ(Cq), µ±(Cp) and µ±(Cq).

11 Otherwise, let xi remain in Cp.

12 ▷ Train Classifiers
13 For every cluster Cj , train a classifier fj on (Xj ,Yj).
14 Output Classifiers F = {fj}j=k

j=1 and cluster centroids
µ = {µj}j=k

j=1

We now show that CAC is guaranteed to converge and prove
that its per-round time complexity is linear in the number of
data points, dimensions, and number of clusters.

Theorem 2. (Proof in Appendix A.2) Algorithm 1 converges
to a local minimum.
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Figure 1: CAC problem setting (with dummy values for illustrative purposes): (a) The total CAC cost of this clustering is 60;
(b) Point p1 is selected to be reassigned to cluster C1 based on the cluster update equations; (c) p1 is assigned to C1 and the
cost functions of C1 and C2 are updated; (d) At testing time, x̂ is assigned to cluster C2 as it lies nearest to x̂.

Theorem 3. (Proof in Appendix A.3) The time complexity
for each round of CAC is O(ndk).

Remark (Hartigan vs. Lloyd). For k-means clustering,
both Lloyd’s method and Hartigan’s method converge since
the cost function always decreases monotonically with each
update. Note that Lloyd’s method does not consider the
change in centroids while updating the assignment of a
point, and instead, directly assign points to their current
closest centroids. In our setting, Lloyd’s method can sim-
ilarly fix all centroids, compute a new assignment, and
update the centroids accordingly. For instance, replac-
ing the assignment rule of xi in Algorithm 1 by q :=
argminj ∥xi−µ(Cj)∥2−α · ∥µ+(Cj)−µ−(Cj)∥2. How-
ever, our cost function contains an additional squared dis-
tance term between positive and negative centroids, i.e.,
−α · ∥µ+(Cj) − µ−(Cj)∥2. There is no guarantee that
this term monotonically decreases by Lloyd’s method dur-
ing the update of µ+(Cj) and µ−(Cj) after an assignment.
Hence, it is non-trivial to ensure and prove the convergence
of Lloyd’s method with our cost function. However, with
the use of Hartigan’s method, convergence is ensured by
design. As for the rate of convergence, empirical experi-
ments demonstrate that the rate of convergence is positively
related to α (See Figure 2b).

CAC prediction CAC outputs a set of cluster represen-
tatives denoted by their centroids and the trained classifiers
associated with those clusters. To make predictions for a
test point x̂, the first step is to find the cluster to which the
test point is most likely to belong. This can be done by as-
signing the test point to a cluster represented by the ‘closest’
centroid Cj in the data space i.e. j = argminl ∥x̂ − µl∥2.
The corresponding classifier fj can then be used to predict
ŷ = fj(x̂).

Bounding Log-Loss of Classifiers in terms of Class
Separation We now prove how class separability within
clusters has a direct effect on the training error of classifiers

employing log-loss. The following theorem also validates
our choice of using ∥µ+ − µ−∥ as a heuristic to measure
class separability.

Lemma 1. (Proof in Appendix A.4) For d dimentional vec-
tors u,v and β, ∂∆

∂∥u∥ < 0 for ∆ = A− (Bβu+ Cβv) if
βiui > 0,∀i ∈ {1, 2, · · · , d} and A,B > 0.

Theorem 4. (Proof in Appendix A.5) Let X =
(x1, x2, · · · , xN ) be a training dataset with n records xi ∈
Rd together with binary labels yi ∈ {0, 1}. Define the log-
loss over the entire dataset as : ℓ(X) = −Σiyi ln(p(xi)) +
(1− yi) ln(1− p(xi)), where p(xi) = [1 + exp(−βxi)]

−1

and β = argminβ ℓ(X). Then,

C1−(C3βµ
+−C4βµ

−) ≤ ℓ(X) ≤ C2−(C3βµ
+−C4βµ

−)

where C1 = N ln(2), C2 = N ln(1+exp(c))− Nc
2 , C3 =

N+

2 , C4 = N−

2 , N+ =
∑

xi∈X yi, N− =
∑

xi∈X(1−yi)
and c = argmaxi ∥βxi∥.

Note that Theorem 4 can be easily extended to multi-class
scenario whereby we will get the bounds in a similar form i.e.
C0−(

∑
k Ckβµ

k). C0 would be the same for the upper and
lower bound as in the above theorem. Additional constants
denoting the counts of various class points (Ck = Nk

2 ) and
βµk, where Nk representing the number of points belonging
to class k and µk representing the class centroid of class k
can easily be anticipated.

6 DEEPCAC

CAC assumes linear class separability. To model non-linear
boundaries in complex real-world data, we develop a deep
learning variant of CAC. DEEPCAC is an autoencoder based
deep clustering algorithm that induces clusters in an embed-
ded space and can thus handle non-linear separation bound-
aries in the data space. Similar to CAC, DEEPCAC then
trains individual local networks on the clusters thus found to
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Figure 2: CAC Training and Testing curves on Credit dataset with varying α (k = 3) and LR base classifier (a–b). Sensitivity
Analysis with F1/AUC and Silhouette scores on the CIC dataset w.r.t. α for DEEPCAC (c–d)

Algorithm 2: DEEPCAC

Input: Training Data: X ∈ Rn×d, class labels
yn×1 ∈ [B]n, {Cj}k1 , {fj}k1 and α

1 ▷ Initialization
2 Pretrain E and D to initialize U ,V
3 Compute µ(Cj), µ

c(Cj) ∀ Cj s.t. j ∈ {1, · · · , k}, c ∈
{1, · · · ,B}.

4 ▷ Algorithm
5 while not converged do
6 for every mini-batch Xb do
7 Update Network parameters by

backpropagating L
8 Update cluster assignments
9 Update cluster centroids

10 ▷ Train Classifiers
11 For every cluster Cj , train a classifier fj on (Xj ,Yj).
12 Output Classifiers F = {fj}j=k

j=1 and cluster centroids
µ = {µj}j=k

j=1

build predictive risk models. DEEPCAC also modifies the
class separability component in the overall loss function to
accommodate multiple (B) classes. The various components
of DEEPCAC algorithm are described below.

6.1 NETWORK ARCHITECTURE

The DEEPCAC architecture is based on a stacked autoen-
coder consisting of an encoder and decoder parameterized
by (U ,V) as E(U) : X −→ Z and D(V) : Z −→ X . Z
denotes the space of lower dimensional embeddings of
the original data points. There also exist k local networks
({LNj(Wj)}kj=1) that are trained separately from the au-
toencoder. Similar to CAC, the data points are clustered
but now in the embedded data space Z. Each cluster has
its corresponding cluster and class centroids (µZ , µ

b
Z s.t.

b ∈ [B] as described previously. For notational simplicity,
let M denote the centroid matrix and si,j be the assignment
vector of data point xi which has only one non-zero element.

sj,i denotes the jth element of si, and the kth column of M
, i.e. µk, denotes the centroid of the kth cluster.

6.2 LOSS FUNCTION

The CAC loss function encourages cluster structure forma-
tion and intra-cluster class separation by directly optimizing
for the distance between class cluster centroids. But we ob-
served that DEEPCAC was not able to directly optimize
such a formulation of class separability through gradient de-
scent. We thus use the Additive Margin Softmax Loss (AM
Softmax) [32] to induce class seperablity within clusters.
Apart from this, we also include the reconstruction loss from
the decoder network to regularize the encoder as suggested
in [33]. We also observed that normalizing the cluster SSE
stabilizes training and prevents degenerate solutions. The
final loss function of DEEPCAC thus becomes:

L =

k∑
j=1

∑
i∈Cj

∥xi −D(E(xi))∥2 +
β ∗ ∥E(xi)−Msi∥2

|Cj |
−

α

|Cj |
∑
i

log
es·(W

T
yi

zi−m)

es·(W
T
yi

zi−m) +
∑c

j=1,j ̸=yi
esW

T
j zi

(3)

s.t. sj,i ∈ {0, 1},1T si = 1 ∀i, j

where WT
j is the j-th column of the last fully connected

layer of the AMSoftmax loss.

6.3 TRAINING

Before actual training begins, the autoencoder parameters
(U ,V) are initialized by training the autoencoder to min-
imize the reconstruction loss without activating the CAC
loss functions. Once the autoencoder is initialized, the data
embeddings are clustered using k-means algorithm and the
cluster centroids are initialized. The overall DEEPCAC loss
function is non-convex and difficult to optimize. Stochastic
gradient descent (SGD) cannot be directly applied to jointly
optimize U ,V,M and {si} because the block variable {si}
is constrained on a discrete set. We thus use an alternating



scheme, similar to [34], to optimize the subproblems w.r.t.
one of M, {si} and (U ,V) while keeping the other two sets
of variables fixed. Further details regarding the updating
of network parameters are given in the Appendix C.

7 EXPERIMENTS

7.1 SYNTHETIC DATA

We perform two sets of experiments. The first set of exper-
iments, on synthetic data, study the sensitivity of CAC on
various characteristics of the data like cluster separation and
class separation within clusters. We find that cluster-then-
predict method does enhance overall classifier performance
and exploiting class separation can lead to further improve-
ments. Appendix B.1 presents the details of these exper-
iments and the results. In the second set of experiments,
described below, we compare the performance of CAC with
that of other methods on real benchmark datasets. All ex-
periments are conducted on a 2.6GHz Intel i7 CPU with 16
GB RAM running MacOS 11.1.

7.2 REAL DATA

Datasets. We use 6 benchmark binary-labelled datasets
summarized in Table 1. In addition, we use a large, clinical
dataset, that we call CIC, from the 2012 Physionet challenge
[35] of predicting in-hospital mortality of intensive care
units (ICU) patients at the end of their hospital stay. The
data has time-series records, comprising various physiolog-
ical parameters, of 12,000 patient ICU stays. We follow the
data processing scheme of [36] (the top ranked team in the
competition) to obtain static 117-dimensional features for
each patient. We also derive a multiclass dataset (CIC-LOS)
from the CIC dataset where we predict Length of Stay
(LOS), discretized into 3 classes (based on 3 quartiles).

Experimental Setup. For each dataset we randomly
choose 25% of the data as held-out data on which classifier
performance is evaluated. The remaining data is used for
training the classifiers and performing GridCV parameter
search. Standard binary classification metric, the F1 score,
is used to evaluate classifier performance.

Baselines. The state-of-the-art baseline method for com-
bined clustering and classification is DMNN [4]. DMNN
originally employs the k-means algorithm for clustering and
a neural network based classifier. In addition, we use 7 dif-
ferent base classifiers, implemented by sklearn library (BSD
licenced): LR, Linear SVM, Linear Discriminant Analysis
(LDA), single Perceptron, Random Forest (#trees = 10), k
Nearest Neighbors (k = 5), SGD classifier and Ridge clas-
sifier (Ridge regressor predicting over the range [−1, 1]) as
a baseline directly and with k-means (KM+X) in a ‘cluster-

then-predict’ approach. FNN has the base network of DEEP-
CAC but without any clustering. We implement DMNN
ourselves in PyTorch.

Hyperparameters. For all KM+X and CAC+X ex-
periments in Table 1, we choose k = 2 (k = 3 for
Credit dataset) (after GridCV hyperparameter search). For
CAC, we find the optimal value of α by performing a
GridCV search over the range [0.01, 3]. We evaluate the
algorithm on a separate held-out test dataset. For DMNN
and DEEPCAC, the autoencoder has 3 layer of sizes
64 − 32 − 64 and a two-layered local predictor network
of size 30 − 1. The autoencoder has L1-L2 regularization
(L1: 1e-5, L2: 1e-4) and no activation. The local prediction
networks use softmax and relu activation functions and are
not regularized. More details are in Appendix B.2.

Setting α parameter. The performance of CAC heavily
depends on the value of α. We illustrate this in Figure 2a
for the Credit dataset. If α is too small, then the training
will be very slow, and the clusters found will not have
enough class separability. If α is too large, CAC will show
overfitting behavior (Figure 4 in Appendix). Although the
clusters formed will have large class separability and the
training error of base classifiers will approach 0, because
the clusters are too spread out, at test time, the performance
will be poor. Figure 2c shows that the classification and
clustering performance of DEEPCAC first deteriorates but
then improves as α increases. We thus choose α = 5, β = 2
for all DEEPCAC experiments.

Results. Table 1 presents the F1 scores obtained by all
algorithms.

• We observe that the average % increase in F1 score of
CAC (KM + classifier) over the base classifier ranges
from 3.26% (1.85%) for Titanic dataset to 91.5% for
the Diabetes dataset (15.07% for Credit dataset) (val-
ues not in Table 1). This is in line with theorem 1 that
predicts better performance of multiple simple classi-
fiers as compared to a single simple classifier.

• CAC performs better than the simple k-means + classi-
fication approach on all the datasets. This also serves
as an ablative evidence of the contribution of linear
separability criteria since removing the latter reduces
CAC to applying k-means and then predicting.

• DEEPCAC beats the baseline FNN and DMNN consis-
tently on all datasets (except Adult) by a large margin.
Note that as hypothesized in Section 4, on relatively
smaller datasets such as Titanic and Heart datasets, sim-
pler models with clustering work better than complex
models (FNN, DMNN and DeepCAC).

• On the Heart dataset, having just 303 samples, simple
base classifiers outperform any clustering based or
complex neural network model. The moderately



Table 1: F1 of each method on different datasets evaluated on a separate held out testing dataset. ∗/∗/∗ indicates the number
of times the base classifier, KM+Base and CAC+Base attains the best performance. Highlighted values signify the best
result in that category. Size of datasets are mentioned below in parentheses.

Dataset/ Titanic Heart Credit Adult Diabetes CIC CIC-LOS Total
Classifier (2200) (303) (30000) (45000) (100000) (12000) (12000)

LR 0.839 0.871 0.336 0.556 0.12 0.45 -
KM + LR 0.674 0.718 0.505 0.619 0.503 0.468 - 2/2/2
CAC + LR 0.838 0.623 0.506 0.642 0.497 0.467 -

SVM 0.84 0.884 0.249 0.532 0.112 0.412 -
KM + SVM 0.862 0.881 0.398 0.601 0.125 0.44 - 1/0/5
CAC + SVM 0.862 0.857 0.447 0.62 0.497 0.444 -

LDA 0.828 0.897 0.358 0.531 0.12 0.446 -
KM + LDA 0.857 0.892 0.423 0.592 0.105 0.487 - 1/2/3
CAC + LDA 0.857 0.881 0.421 0.62 0.497 0.48 -

Perceptron 0.729 0.765 0.367 0.482 0.469 0.378 -
KM + Perceptron 0.837 0.857 0.329 0.579 0.407 0.421 - 0/2/4
CAC + Perceptron 0.831 0.692 0.457 0.62 0.497 0.446 -

RF 0.836 0.800 0.409 0.659 0.413 0.348 -
KM + RF 0.835 0.829 0.396 0.655 0.409 0.343 - 0/1/5
CAC + RF 0.839 0.825 0.446 0.662 0.497 0.444 -

KNN 0.809 0.843 0.425 0.654 0.415 0.258 -
KM + KNN 0.833 0.841 0.421 0.653 0.411 0.225 - 1/0/5
CAC + KNN 0.833 0.854 0.446 0.653 0.497 0.444 -

SGD 0.831 0.810 0.272 0.531 0.248 0.438 -
KM + SGD 0.857 0.729 0.250 0.605 0.15 0.376 - 1/1/4
CAC + SGD 0.835 0.759 0.375 0.62 0.497 0.472 -

Ridge 0.828 0.897 0.223 0.495 0.112 0.329 -
KM + Ridge 0.858 0.884 0.372 0.581 0.124 0.356 - 1/1/4
CAC + Ridge 0.858 0.871 0.446 0.62 0.497 0.444 -

FNN 0.591 0.797 0.690 0.782 0.443 0.652 0.431
DMNN 0.523 0.811 0.631 0.740 0.262 0.595 0.412 1/0/6
DEEPCAC(k = 3) 0.655 0.849 0.690 0.777 0.486 0.697 0.468

Total 1/5/3 5/2/1 0/1/8 1/1/7 0/0/9 0/2/7 0/0/1

sized Titanic dataset demonstrates how simple,
cluster-then-predict algorithms outperforms more
complex neural network methods.

8 CONCLUSION

Clustering has been effectively used with classification mod-
els in many previous models and for various applications.
In this paper, we theoretically analyze potential reasons for
the good performance of classifiers trained on underlying
clusters in data. Our analysis yields insights into the bene-
fits of using simple classifiers trained on clusters compared
to simple or complex classifiers trained without clustering.
Deeper analysis along these lines would be an interesting
direction for future work.

Our analysis motivates the development of a new clustering-
based framework for classification, CAC, that enforces class
separability within each cluster during cluster discovery. We
design an efficient iterative algorithm to find such clusters.
Unlike most previous approaches, CAC is simple, efficient,
and can be used with any classifier. We also propose DEEP-
CAC a deep variant of CAC that can handle multi-class data
and non-linear separation boundaries in data. In our exper-
iments, we find that CAC and DEEPCAC outperforms state-
of-the-art methods of combined clustering and classification.

It would be interesting to explore the benefits offered by
unsupervised techniques in supervised applications like ad-
versarial robustness, efficient regularization etc. Recent suc-
cess of self supervised and contrastive learning approaches
strongly suggests untapped potential that may be exploited.
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A PROOF OF THEOREMS

A.1 PROOF OF THEOREM 1

Theorem 5. Let Fj be a set of maps x 7→ f(x), and the
function q 7→ ℓ (q, y) be a λ-uniformly bounded function
for any q ∈ {f(x) : f ∈ Fj , x ∈ Xj} and y ∈ Yj . Then,
for any δ > 0, with probability at least 1− δ over an i.i.d.
draw of m i.i.d. samples ((xi, yi))

m
i=1, the following holds:

for all maps f ∈ Fj ,

Ex,y[ℓ(f(x), y)] ≤
1

mj

mj∑
i=1

ℓ(f(xi), yi)+

2Rmj (ℓ ◦ Fj) + λ

√
ln(1/δ)

2mj

where Rmj
(ℓ ◦ Fj) :=

ES,σ[supf∈Fj

1
mj

∑mj

i=1 σiℓ(f(xi), yi)] where
σ1, . . . , σmj are independent uniform random vari-
ables taking values in {−1, 1}.

Proof of Theorem 1. Let S = ((xi, yi))
m
i=1 and S′ =

((x′
i, y

′
i))

m
i=1. Define

φ(S) = sup
f∈Fj

Ex,y[ℓ(f(x), y)]−
1

m

m∑
i=1

ℓ(f(xi), yi). (4)

To apply McDiarmid’s inequality to φ(S), we compute an
upper bound on |φ(S)− φ(S′)| where S and S′ be two test
datasets differing by exactly one point of an arbitrary index
i0; i.e., Si = S′

i for all i ̸= i0 and Si0 ̸= S′
i0

. Then,

φ(S′)− φ(S) ≤ sup
f∈Fj

ℓ(f(xi0), yi0)− ℓ(f(x′
i0
), y′i0)

m
≤ λ

m
.

(5)

Thus, by McDiarmid’s inequality, for any δ > 0, with prob-
ability at least 1− δ,

φ(S) ≤ ES [φ(S)] + λ

√
ln(1/δ)

2m
. (6)

Moreover,

ES [φ(S)] (7)

= ES

[
sup
f∈Fj

ES′

[
1

m

m∑
i=1

ℓ(f(x′
i), y

′
i)

]
− 1

m

m∑
i=1

ℓ(f(xi), yi)

]
(8)

≤ ES,S′

[
sup
f∈Fj

1

m

m∑
i=1

(ℓ(f(x′
i), y

′
i)− ℓ(f(xi), yi)

]
(9)

≤ Eξ,S,S′

[
sup
f∈Fj

1

m

m∑
i=1

ξi(ℓ(f(x
′
i), y

′
i)− ℓ(f(xi), yi))

]
(10)

≤ 2Eξ,S

[
sup
f∈Fj

1

m

m∑
i=1

ξiℓ(f(xi), yi))

]
= 2Rm(ℓ ◦ Fj)

(11)

where the first line follows the definitions of each term,
the second line uses the Jensen’s inequality and the
convexity of the supremum, and the third line follows
that for each ξi ∈ {−1,+1}, the distribution of each
term ξi(ℓ(f(x

′
i), y

′
i) − ℓ(f(xi), yi)) is the distribution of

(ℓ(f(x′
i), y

′
i) − ℓ(f(xi), yi)) since S and S′ are drawn iid

with the same distribution. The forth line uses the subaddi-
tivity of supremum.

A.2 PROOF OF THEOREM 2

Theorem 2. Algorithm 1 converges to a local minimum.

Proof. To prove convergence, it suffices to verify that the
cost function, that re-assigns point x from cluster Cp to
cluster Cq, monotonically decreases at each iteration. This
is equivalent to showing ϕ(Cp \ {xi}) + ϕ(Cq ∪ {xi}) <
ϕ(Cp) + ϕ(Cq) =⇒ (ϕ(Cp \ {xi})− ϕ(Cp)) + (ϕ(Cq ∪
{xi}) − ϕ(Cq)) < 0 =⇒ Γ+(Cq, x) + Γ−(Cp, x) <
0 =⇒ Φ(xi, Cp, Cq) < 0.

Φ(xi, Cp, Cq) < 0 is exactly the update condition for the
algorithm that ensures that the total cost function is always
decreasing with every point update and in every iteration.

A.3 PROOF OF THEOREM 3

Theorem 3. The time complexity for each round of CAC is
O(ndk).

Proof. For the time complexity of each round, it suffices
to prove the running time for each point xi is O(dk). For
each j ∈ [k], we denote the centroid, positive centroid
and negative centroid of Cj ∪ {xi} as µ̃(Cj), µ̃+(Cj) and



µ̃−(Cj) respectively. Given a cluster Cj and a point z ∈ Rd,
we denote the clustering cost of C w.r.t. z to be

g(Cj , z) :=
∑
x∈Cj

∥x− z∥2.

A standard result from the k-means literature [37] is the
following bias-variance decomposition of the k-means cost
function:

g(Cj , z) = ϕ(Cj , µ(Cj)) + |Cj | · ∥µ(Cj)− z∥2.

Note that the above result holds for CAC cluster cost func-
tion also as can be shown easily by a little algebra. Based
on this property, we have

Γ+(Cj , xi)

=∥µ̃− xi∥2 + |Cj | · ∥µ̃(Cj)− µ(Cj)∥2

+ α|Cj | · ∥µ+(Cj)− µ−(Cj)∥2

− α(|Cj |+ 1) · ∥µ̃+(Cj)− µ̃−(Cj)∥2

Γ−(Cj , xi)

=− ∥µ(Cj)− xi∥2 − (|Cj | − 1)∥µ̃(Cj)− µ(Cj)∥2

+ α|Cj | · ∥µ+(Cj)− µ−(Cj)∥2

− α(|Cj | − 1) · ∥µ̃+(Cj)− µ̃−(Cj)∥2

Then it suffices to prove that both Γ+(Cj , xi) and
Γ−(Cj , xi) can be computed in O(d) time, which implies
O(dk) time for computing q := argminj Φ(xi;Cp, Cj).
Moreover, by the above formulations, it suffices to prove
that µ̃(Cj), µ̃+(Cj) and µ̃−(Cj) can be computed in O(d)

time. Note that µ̃(Cp) =
|Cp|·µ(Cp)−xi

|Cp|−1 and µ̃(Cj) =
|Cj |·µ(Cj)+xi

|Cj |+1 for j ̸= p. Hence, each µ̃(Cj) can be com-
puted in O(d) time. We discuss the following two cases for
the computation of µ̃+(Cj) and µ̃−(Cj).

• Case yi = 1. We have that µ̃+(Cp) =(∑
xl∈Cp

yl

)
·µ+

p −xi∑
xl∈Cp

yl−1 and µ̃−(Cp) = µ−(Cp). For j ̸=

p, we have that µ̃+(Cj) ←
(∑

xl∈Cj
yl

)
·µ+

j +xi∑
xl∈Cj

yl+1 and

µ̃−(Cj) = µ−(Cj).

• Case yi = 0. We have that µ̃−
p ←(∑

xl∈Cp
(1−yl)

)
·µ−

p −xi∑
xl∈Cp

(1−yl)−1 and µ̃+(Cp) = µ+(Cp).

For j ̸= p, we have that µ̃−
j ←

(∑
xl∈Cj

(1−yl)
)
·µ−

j +xi∑
xl∈Cj

(1−yl)+1

and µ̃+(Cj) = µ+(Cj).

By the above update rules, both µ̃+(Cj) and µ̃−(Cj) can
be computed in O(d) time, which completes the proof.

A.4 PROOF OF LEMMA 1

Lemma 2. For d dimentional vectors u,v and β, ∂∆
∂∥u∥ < 0

for ∆ = A−(Bβu+Cβv) if βiui > 0,∀i ∈ {1, 2, · · · , d}
and A,B > 0.

Proof. Let ui be the ith element of u. Expanding ∂∆
∂∥u∥

using chain rule, we get

∂∆

∂∥u∥
=

∂∆

∂u
· ∂u

∂∥u∥
= −Bβ · ∂u

∂∥u∥
(Since

∂∆

∂u
= −Bβu)

Let ui denote the ith element of u. Then, from the definition
of vector derivatives we have,

∂u

∂∥u∥
=

[
∂u1

∂∥u∥
,
∂u2

∂∥u∥
, · · · , ∂ud

∂∥u∥

]
=

[(
∂∥u∥
∂u1

)−1

,

(
∂∥u∥
∂u2

)−1

, · · · ,
(
∂∥u∥
∂ud

)−1
]

= ∥u∥
[
1

u1
,
1

u2
, · · · , 1

ud

]

Thus, ∂∆
∂∥u∥ = −B · ∥u∥ ·

d∑
i=1

βi

ui
, where ui = µ+

i − µ−
i .

Since β · µ+ > 0 and β · µ− < 0, it implies that β · u > 0.
Assuming that every dimension of u lies on the same side
of regression plane β as the original point, i.e. βiui = βi >
0,∀i, βi

ui
> 0 ∀i, then ∂∆

∂∥u∥ < 0 as B and ∥u∥. Thus
under above assumption, we prove that ∆ decreases as ∥u∥
increases.

A.5 PROOF OF THEOREM 4

Theorem 4. Let X = (x1, x2, · · · , xN ) be a training
dataset with n records xi ∈ Rd together with binary la-
bels yi ∈ {0, 1}. Define the log-loss over the entire dataset
as :

ℓ(X) = −Σiyi ln(p(xi)) + (1− yi) ln(1− p(xi))

where p(xi) = [1+exp(−βxi)]
−1 and β = argminβ ℓ(X).

Then,

C1−(C3βµ
+−C4βµ

−) ≤ ℓ(X) ≤ C2−(C3βµ
+−C4βµ

−)

where C1 = N ln(2), C2 = N ln(1+exp(c))− Nc
2 , C3 =

N+

2 , C4 = N−

2 , N+ =
∑

xi∈X yi, N− =
∑

xi∈X(1−yi)
and c = argmaxi ∥βxi∥.

Proof. Lower Bound Let ℓ(X, y) = Σyi=1ℓ
+(xi) +

Σyi=0ℓ
−(xi) s.t.

ℓ+(xi) = − ln(pi), ℓ
−(xi) = − ln(1− pi) (12)



Applying Jensen’s inequality on ℓ+ and ℓ−,

ℓ(X) =Σxi∈X+ℓ+(xi) + Σxi∈X−ℓ−(xi)

=− Σyi=1 ln[1 + exp(−βxi)]
−1−

Σyi=0 ln[1− (1 + exp(−βxi))
−1] (By eq. 12)

≥−N+ ln

[
1 + exp

(
−β ·

(
Σxi∈X+xi

N+

))]−1

−N− ln

[
1−

(
1 + exp

(
−β ·

(
Σxi∈X−xi

N−

)))−1
]

(Jensen’s inequality for convex functions)

≥N+ ln[1 + exp(−βµ+)]−N− ln

[
exp(−βµ−)

1 + exp(−βµ−)

]
(Substituting µ+ and µ−)

≥N+ ln[1 + exp(−βµ+)] +N− ln[1 + exp(βµ−)]

We observe that ln(1 + exp(x)) ≥ ln(2) + x
2 ∀x ∈ R by

considering the Taylor series expansion of ln(1 + exp(x))

at x = 0. ln(1+exp(x)) = ln(2)+ x
2 +

x2

8 +O(x4). Then,

ℓ(X) ≥ N+

(
ln(2)− βµ+

2

)
+N−

(
ln(2) +

βµ−

2

)
≥ N ln(2)− 1

2
· (N+βµ+ −N−βµ−)

where C1 = N ln(2), C3 = N+

2 , C4 = N−

2 .

Upper Bound

Since all points xi are constrained within their respective
clusters, we note that the maximum log-loss for a point xi

labelled as yi is not unbounded. Let c = argmaxi ∥βxi∥.
Since ℓ+ is a monotonically decreasing function and ℓ− is
monotonically increasing, we can bound them using linear
functions s+ and s− respectively. s+ ≥ ℓ+ and s− ≥ ℓ− for
all points X+ and X− respectively. s+(xi) passes through
(−c, ln(p(−c))) and (c, ln(p(c))). Hence s+(x) = K1 −
K2 · βx where K1,K2 > 0. Similarly, s−(x) = K3 +K4 ·
βx where K3,K4 > 0.

Solving for K1 · · ·K4, we get

K1 = K3 = ln(1 + exp(c))− c

2
, K2 = K4 =

1

2

Then,

ℓ(X) = Σxi∈X+ℓ+(xi) + Σxi∈X−ℓ−(xi)

< Σxi∈X+s+(xi) + Σxi∈X−s−(xi)

≤ N+s+
(
Σxi∈X+xi

N+

)
+N−s−

(
Σxi∈X−xi

N−

)
(Jensen’s inequality for a linear function)

≤ N+s+(µ+) +N−s−(µ−)

≤ N+(K1 −K2 · βµ+) +N−(K3 +K4 · βµ−)

≤ C2 − (C3βµ
+ − C4βµ

−) (Rearranging terms)

where C2 = N ln(1 + exp(c))− Nc
2 and C3 = N+

2 , C4 =
N−

2 .

B SUPPLEMENTARY EXPERIMENTAL
RESULTS AND DISCUSSIONS

B.1 RESULTS ON SYNTHETIC DATASET

We analyze how the performance of CAC depends on the
following data/algorithm parameters:

1. Inner Class Separation (ICS): Distance between class
centroids in an individual cluster.

2. Outer Cluster Separation (OCS): Distance between clus-
ter centroids.

3. Number of natural clusters in the dataset (K).
4. Number of classifiers used in CAC (k), i.e., the number

of clusters used as input.

To study the performance of CAC as a function of these
4 parameters, we modify the make classification
function of sklearn library [38], to generate custom datasets
with varying ICS, OCS, and K. We find that the perfor-
mance of CAC improves with increasing ICS. This is in line
with our hypothesis that if the classes are well separated
within the clusters, then it will improve the performance of
the classifiers. The performance of CAC does not depend
much on the OCS. As the number of natural clusters (K) in
the dataset increases, the performance of CAC decreases.
On the other hand, the performance is better when k > K.

We choose Logistic Regression as the base classifier
for CAC while testing its performance on the syn-
thetic dataset as described in Appendix B.1. The range
of these parameters in our simulations are as follows:
ICS ∈ {0, 0.2, 0.5, 1, 1.5, 2}, OCS ∈ {1, 1.5, 2}, K ∈
{2, 3, 5, 10, 15, 20, 30} and k ∈ {2, 3, 4, 5}. We run
CAC+LR for all combination of parameters.

Figure 3 presents the results of the experiments. In each
subfigure, the results are averaged over all the parameters
not shown in the axes. In Figure 3a, note that the perfor-
mance of CAC improves as Inner Class Separation within
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Figure 3: Evaluating the effect of different parameters on the performance of CAC

the clusters increases. This is in line with our hypothesis
that if the classes are well separated within the clusters,
then it will improve the performance of the classifiers. The
performance of CAC does not depend much on the Outer
Cluster Separation (Figure 3b). This is also expected as a
classifier will be relatively unaffected by the presence of
another cluster, irrespective of its distance as the data in that
cluster is not a part of its training set.

As the number of natural clusters in the dataset increases,
the performance of CAC decreases (Figure 3c). This phe-
nomenon is expected from linear classifiers as they cannot
handle nonlinearities in data. Hence, dividing the data into
multiple groups will decrease the piece-wise nonlinearity
and the overall algorithm will work better [2]. In Figure
3d, we observe that the results are better for the cases when
k ≥ K (i.e., closer to the points near the x-axis). This shows
that the performance is better when the number of clusters
given as input is not less than the natural clusters in the data,
compared to the case when the input number of clusters is
less than the natural number of clusters. In the latter case,
each (linear) classifier has to learn a non-linear boundary
due to the intrinsic cluster structure that leads to a decrease
in the performance.

B.2 HYPERPARAMETER DETAILS

Table 2 shows the tuned values of α used by different vari-
ants of CAC on different datasets. We find these values by
performing a 5-fold Grid search cross validation. Figure 4
shows how the CAC cost function decreases monotonically
(as proved in Theorem 2) over iterations for different values
of α.

C DEEPCAC TRAINING DETAILS

Updating Clustering Parameters For optimizing the clus-
tering loss, we follow the procedure defined in [34]. For
fixed network parameters and cluster assignment matrix M ,
the assignment vectors of the current sample, i.e., si, are
updated in an online fashion. Specifically, si is updated as

Table 2: Tuned α values used for CAC in experiments found
after 5-fold GridCV search

Classifier Titanic Credit Adult Diabetes CIC

LR 0.8 0.02 0.05 2.5 0.05
SVM 0.01 0.15 0.15 2.5 0.5
LDA 0.08 0.02 0.15 2.5 0.05
Perceptron 0.5 0.2 0.15 2.5 0.5
RF 0.05 0.15 0.02 2.5 0.5
KNN 0.01 0.15 0.02 2.5 0.5
SGD 0.3 0.08 0.15 2.5 0.01
Ridge 0.01 0.15 0.15 2.5 0.5
DMNN 0.2 0.3 0.8 0.15 0.1
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Figure 4: Total CAC cost v/s # of iterations for different α.

follows:

si,j =

{
1, if j = argminl ∥f(xi)− µl∥2

0, otherwise

In [34], the authors update the cluster centroids in an online
manner instead of simply taking the average of every mini-
batch as the current minibatch might not be representative
of the global cluster structure. So the cluster centroids are



updated as follows by a simple gradient step:

µj ←− µj −
1

cik
(µj − f(xi))sk,i

where cik is the count of the number of times algorithm
assigned a sample to cluster k before handling the incoming
sample xi. The class cluster centroids µb

k are also updated
in a similar, online manner due to the above mentioned
reasons.

Updating Autoencoder’s weights. For fixed (M, si), the
subproblem of optimizing (W,U) is similar to training an
SAE – but with an additional loss term on clustering perfor-
mance. Modern deep learning libraries like PyTorch allow
us to easily backpropagate both the losses simultaneously.
To implement SGD for updating the network parameters,
we look at the problem w.r.t. the incoming data xi:

min
U,W

Li = ℓ(g(f(xi)), xi)+β∥f(xi)−Msi∥+α

k∑
j=1

LAM

The gradient of the above function over the network parame-
ters is easily computable, i.e.,∇XJLi =

∂ℓ(g(f(xi;W);U)
∂J +

α∂f(xi)
∂J (f(xi)−Msi), where J = (W,U ,V) is a collec-

tion of network parameters and the gradients ∂l
∂J can be

calculated by back-propagation. Then, the network parame-
ters are updated by

J ←− J − τ∇JLi

where τ is the diminishing learning rate.

D EXPLAINING CAC ON REAL
DATASETS

In Figure 5, we note that the Diabetes dataset has a low
ICS(KM) value but ICS after clustering using CAC is very
high. This gives a hint as to why CAC performs the best on
Diabetes dataset.

0

1.75

3.5

5.25

7

Titanic Creditcard Adult Diabetes CIC

ICS (KM) ICS (CAC)

Figure 5: The total Inter Cluster Separation (ICS) for clusters
found by k-means and CAC algorithms. α for CAC is set to
the optimum values used by the CAC + LR variant.
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