2017 IEEE International Conference on Big Data (BIGDATA)

AnyFI: An Anytime Frequent Itemset Mining Algorithm for Data Streams

Poonam Goyal, Jagat Sesh Challa, Shivin Shrivastava, Navneet Goyal
Advanced Data Analytics and Parallel Technologies Lab, Dept. of Computer Science & Information Systems, Pilani Campus
Birla Institute of Technology & Science, Pilani, Rajasthan, India
{poonam, jagatsesh, 2013073, goel} @pilani.bits-pilani.ac.in

Abstract— Mining frequent itemsets from transactional data
streams has been vastly studied in literature. The existing
algorithms mine frequent itemsets within the stream’s
constrained environment of limited time and memory. However,
none of them are capable of handling varying inter-arrival rates
of streams. Moreover, these algorithms are not capable of giving
mining results instantaneously, even with compromised
accuracy if required, and improve the accuracy with increase in
time allowance. These two properties characterize an anytime
algorithm. In this paper, we propose AnyFI, which is the first
anytime frequent itemset mining algorithm for data streams.
We also propose a novel data structure, BFI-forest, which is
capable of handling transactions with varying inter-arrival rate.
AnyFI maintains itemsets in BFI-forest in such a way that it can
give a mining result almost immediately when time allowance to
mine is very less and can refine the results for better accuracy
with increase in time allowance. Our experimental results show
that AnyFI can handle high stream speeds upto 60,000
transactions per second (tps) with recall close to 100%.

Keywords- Frequent Itemset Mining; Data Streams; Anytime
Mining

I. INTRODUCTION

Mining for frequent itemsets (FIs) in transactional data
streams is commonly used in various applications such as
stock market analysis, web log analysis, retail chain analysis,
etc. Researchers have proposed various algorithms to mine FIs
from streams under constrained environment of limited time
memory. Few of them include - Sticky Sampling and Lossy
Counting [1], FP-Stream [2], CPS-Tree [3], DSM-FI [4],
SWP-Tree [5], VSW [6], etc. These algorithms insert
incoming transactions into a hierarchical structure in online
manner, and whenever a request for mining comes from the
user, they extract FIs in an offline manner, and present them
as the mining result.

The existing algorithms, miss out on two important
characteristics of data streams. First, very often streams do not
have constant speed (or inter-arrival rate of transactions),
which varies depending on application domains. For example,
in retail chain analysis, the rate of arrival of transactions is
higher during rush hours and lower other times. The existing
algorithms are budget algorithms, i.e. they are designed for a
fixed maximum stream speed and cannot process higher
speeds. An ideal algorithm should be able to process any
stream speed. The second is that they lack the ability to
produce immediate mining results with compromised
accuracy, if required. Applications such as stock market
analysis sometimes require immediate results. For example, a
short term stock investor, would require an immediate result.
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Whereas, a long term investor would wait for some additional
time until more accurate results are available. So, when a
request for mining result comes from the user, an ideal
algorithm should give an immediate approximate result, and
improve its quality with increase in time allowance. The step
for mining of FIs in the existing algorithms is quite costly in
terms of execution time and hence cannot give an immediate
approximate result, even with compromised accuracy.

The above two properties — 1. handling varying inter-
arrival rate of transactions; and 2. giving the best possible
result according to the available time allowance; are the
characteristics of an anytime mining algorithm for data
streams. A few anytime algorithms are proposed for clustering
[71, [8] and classification [9], [10]. There is one anytime FI
mining algorithm [11] proposed for multi-user applications
which possesses the second characteristic. However, the
method is static and is not meant for data streams.

In this paper, we present an Anytime Frequent Itemset
mining algorithm for data streams, referred as AnyFI,
characterized by the above two properties. To the best of our
knowledge, this is first such attempt. We also propose a novel
data structure known as Buffered Frequent Itemset Forest
(BFI-forest), to insert the incoming transactions. BFI-forest
stores buffers at its tree nodes, which aid AnyFI to handle
variable stream speeds. AnyFI tries to insert all suffix
projections (defined in section 3) of incoming transactions
into its forest, depending upon the available time allowance.
As a result of which, mining BFI-forest, becomes a simple
traversal of its trees to accumulate FIs, without generating
any candidate itemsets like in apriori like methods [12]-[14],
or conditional trees like in FP-growth like methods [3], [15],
thus making mining of FIs very efficient. AnyFI can also give
out a mining result almost immediately with compromised
accuracy, and can improve the quality of results with increase
in time allowance. The experimental analysis show that
AnyFI is able to handle stream speeds up to 60,000
transactions per second (tps), with recall = 100%.

The remainder of the paper is organized as follows:
Section II presents the related work, Section III presents the
proposed algorithm and Section IV presents experimental
results followed by conclusions and future work in Section V.

II.  RELATED WORK

Researchers have proposed various FI mining algorithms
for data streams using stream models such as landmark
window (LW) and sliding window (SW). Sticky-Sampling
and Lossy Counting [1] are two algorithms that are based on
Apriori and following the LW model. They produce less
accurate results with an error bound. FP-Stream [2] uses



tilted-time window (variation of LW), which takes data in
batches of transactions, builds FP-tree for each batch, mines
for FIs from it, and inserts them into a pattern tree, which has
tilted-time windows stored at its nodes. Since, this algorithm
mines every batch separately, it cannot handle variable
stream speeds. DSM-FI [4] is another algorithm that uses
LW. It keeps a forest of prefix trees which are similar to FP-
trees and inserts each incoming transactions completely into
the forest and thus cannot be interrupted anytime.

CPS-Tree [3] is FP-tree based algorithm that uses SW. It
takes in a pane of transactions at a time and inserts them into
the CPS-tree. After insertion of certain fixed number of
panes, CPS-tree undergoes re-structuring and pruning. It uses
FP-growth for mining FIs, whenever the request comes. FP-
growth is not capable of delivering an immediate result with
compromised accuracy. This is because, it enumerates many
conditional trees which takes large time for larger batch sizes.
MFI-TransSW [16] is another SW based approach that
represents the items in the form of a bit vector and uses apriori
for mining, which is very slow for lower support thresholds
and is also not capable of delivering an anytime result. SWP-
Tree [5] is another SW based algorithm that uses a prefix tree
similar to that of FP-tree. SWP-tree additionally uses decay
on its support count to give higher weightage to recent
transactions. It uses FP-growth for mining FIs, which is again
not capable of giving anytime result. VSW [6] is another
algorithm which adjusts the size of SW on demand. It uses
ECLAT [14] which is a variant of Apriori and is slow in its
computations, and thus not capable of handling high speed
streams.

A few algorithms were proposed in literature for anytime
clustering [7], [8] and classification [9], [10] in data streams.
There is one anytime FI mining algorithm for multi-user
applications over large static databases [11]. It uses sampling
and addresses the second aspect of an anytime algorithm, i.e.,
it gives an immediate approximate result and improves it with
increase in time allowance. However, it is for static data and
not fit for streams.

Based on above discussion, it is clear that none of the
existing algorithms fit the bill for an anytime FI mining
algorithm for data streams.

III. THE PROPOSED ANYFI ALGORITHM
A. Formal Definitions

Following the definitions & notations given in Table 1,
we define the problem statement - given DS, sDS and o, the
problem of FI mining from a data stream is to find those
itemsets in sDS which have their frequency counts greater
than the threshold - o|sDS|. The set sDS is modelled as a
window of different forms — landmark window (4], sliding
window [3] or damped window [5] for different algorithms.
In order to save space and execution time of algorithms, we
use an additional support threshold, €, to prune infrequent
transactions [1], [4]. An itemset S is said to be e-frequent, if
€|sDS| < Supsps(S) < a|sDS|, where € is a lower bound on
frequency count such that if Supsps(S) < €|sDS|, we say
that S is infrequent.
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TABLE I. DEFINITIONS & NOTATIONS

Definition

1 is set of literals denoting unique items of a
domain. Literals are typically integers. |/| =n.

Notation

I'={iy, iy 05 - in}
S={i,..i,}SI; x<
y&x,y€[l..n]

DS = [ty, by b)) 5

is /" arrived trans.

S is an itemset of size k if it contains & items.

DS is a data stream which is continuous
unbounded sequence of transactions.

tj is a transaction which is a tuple -
transaction ID, arrival time and an itemset S’
(S’ € I). If for an itemset S, S € S', we say
that t; contains S or § occurs in ¢;.
g;0<0<1 Minimum support threshold or min_sup.

sDS A finite contiguous subset of DS.

Frequency count (or support count) of an
itemset S in sDS, i.e. # of transactions in sDS
in which S has occurred.

An itemset S is said to be frequent in sDS if
Suppsps(S) = a|sDS| (also referred as o -
frequent).

For transaction t; = <abcd>, its suffix
projections are <bcd>, <cd> and <d>. # of
suffix projections= |¢;| -1.

Head Head is the first item of a transaction.

B. Stream Model

We adopt the damped window to model our streams.
Damped window helps in lowering the effect of older
transactions with time and thus lets us control the contribution
of a transaction with respect to its arrival time. Recent
transactions get greater weightage and hence recent trends can
be captured more effectively. To achieve this, we use a decay
factor f, 0 < f <1, to decay the frequency counts of
itemsets with time. We denote frequency count of an itemset
S at time Ty as freq(S,T;). At time T,, the decayed
frequency count of S will be —

freq(S,T,) = freq(S,Ty).f27" (1)

In AnyFI, whenever we increment the frequency count of
an itemset, we first decay the existing count using (1) and then
increment it. Also, whenever the frequency count of an
itemset S with respect to any support threshold (say € or o) is
being computed, |sDS| is computed as the difference between
current tid (curr_tid) and tid of the first transaction (ftid)
where S has occurred (|sDS| = curr_tid — S. ftid). ftid is
stored in tree nodes of BFI-forest (explained next).

C. BFI-forest

BFI-forest is a summary data structure that stores the
enumerated suffix projections of arriving transactions. The
itemsets are so arranged in the forest that mining FIs becomes
very efficient. Fig. 1 illustrates the structure of BFI-forest. It
consists a set of BFI-trees (Buffered Frequent Itemset trees),
whose count is <= n. Fig. 1 represents a forest for / =
{a,b,c,d,e}. Each node of a BFI-tree represents an itemset. For
example, node 6 in Treel represents the itemset {ac}. There
are two kinds of nodes in BFI-tree - internal and external.
Internal nodes consists of fields as explained in Table II.
External nodes (leaf nodes) differ from internal nodes only in
one field, i.e., instead of childArr, they have a field fpRoot
which is a pointer to an FP-tree [15]. All the external nodes
are situated at depth Max Height, which is a user defined
parameter. Please note, that those nodes which are not at
depth=Max_Height and don’t have subtrees rooted at them,

t; = (tid, arrTime,S")

Suppsps(S)

Frequent Itemset

Suffix Projections




are not considered external. For e.g., node 11 of Treel is not
an external node.

TABLE II. FIELDS OF AN INTERNAL NODE OF BFI-TREE
Definition
Integer identifier representing a literal i of set /. It represents the
item indexed at the current node.
Frequency count of the itemset represented by this node. For node
6 in Tree 1, efreq would store the frequency count of itemset {ac}.
Transaction ID at which the current node was created.
Timestamp at which the current node was last accessed.
This field represents the buffer at a given node. Buffers store
incompletely inserted transactions, They are a key requirement
for our anytime algorithm. They are implemented as hash tables
with linear chaining (see Fig 1). Each bucket in the hash table is
a linked list of buffer-nodes as shown in Fig. 1. Each buffer-node
stores the following entries: partial_trans, ftid, ltime and efreq.
The field partial trans is a suffix of the partially inserted
transaction. The items in this suffix are not yet inserted into the
tree. The buffer has a limit on the number of buffer nodes it can
hash - buffCapacity. The size of the hash table array (hash_size)
is typically chosen as 10% of n. Simple mod function is used as
the hash function, i.e. for a transaction ¢, = <abc>, the bucket to
which # is to be indexed is computed as: @ mod |hash_size|, where
a is the first item in #. Note that a (even b or ¢) is an integer € /.
It is an array of maximum size n, that stores pointers to the sub-
trees indexed at the current node.

D. AnyFI

AnyFI is the proposed anytime algorithm for mining
frequent itemsets in a continuous data stream. The algorithm
in summary consists of the following steps:

Step 1: Read incoming transactions one by one and order
them lexicographically.

Step 2: Insert each transaction into the BFI-forest.

Step 3: Intermittently prune the infrequent itemsets from BFI-
forest after a fixed interval of arrival of transactions.

Step 4: Mining of BFI-forest for frequent itemsets on demand
depending upon the time allowance.

Insertion in BFI-forest. The insertion of an incoming
transaction into the BFI-forest is an anytime algorithm, i.e. it
is interruptible. The insertion process of a transaction goes on
until its time allowance expires (a new transaction arrives),
after which we proceed to insert the newly arrived transaction.
The incoming transactions from the stream are inserted one by
one into the BFI-forest. For every transaction, we first

Field

item

efreq
ftid
ltime

buff

childArr|

compute the suffix projections and insert them into the buffers
of the corresponding trees. For example, in Fig.1, for the
incoming transaction <acde>, the projections <cde>, <de>
and <e> will be inserted into the buffers of the roots of Trees
1, 3 & 4 respectively, and efieg of the roots of Trees 1, 3,4 &
5 will be incremented by 1, after getting decayed using
equation 1 with T| & T, as ltime and current time respectively.
For inserting <cde> into the buffer of root of Treel, we first
find the hash value to identify the bucket into which it has to
be inserted, (bucket # = ¢ mod |hash_size|). All the projections
starting with ¢ will be hashed to this bucket. If a buffer node
indexing <cde> already exists in this bucket, we increment its
frequency count by 1, after decaying it, as was done before.
Otherwise, we create a new buffer node and append it at the
end of the bucket. All other projections are inserted in the
same way. This operation - taking suffix projections of a
transaction and inserting them into a buffer, is an atomic
operation (non-interruptible) in our algorithm.

After this step, we take each of the affected trees (trees that
were accessed in the above step — Trees 1, 3,4 & 5 in Fig. 1)
and start refining them in depth first order (DFS) of tree nodes.
Depending on available time allowance, we refine these trees
one after the other, i.e., if a new transaction arrives before
refining all the trees, we quit in between and proceed with
processing of the newly arrived transaction. Consider Treel in
Fig. 2a, where <cde> is inserted in its root’s buffer in the
above step. The refinement starts with root node of this tree
(root becomes curr_node). We first remove the first projection
(or partially inserted transaction) from a randomly chosen
bucket of its buffer. This projection is the oldest and expected
to have highest frequency count among buffer nodes in the
bucket. Let’s say that <cde> is the partial transaction that was
removd. We first update its frequency count as explained
before using eqn. 1. If curr node is an external node, we
would insert this projection in to the FP-tree beneath it and
exit the insert function. Otherwise, we take suffix projections
of <cde> and insert them into the buffers of the corresponding
children of curr_node as shown in Fig 2b (nodes 6 & 9 get
projections into their buffers). The insertion into these buffers
is same as explained before. We also increment the frequency
counts of nodes 6 & 9 with respect to the frequency counts of

Fig. 1. Structure of BFI-Forest and BFI-Trees

Treel Tree2 Tree3 Tree4 Tree5
Internal nodes 10O Buffers B
o qD Ce> 4> e <)
D) CHICPREED) e
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the partial transactions being inserted into their buffers, after
decaying them. If any child into which a projection has to be
inserted, does not exist, we create that child first, insert it into
its buffer and assign it a frequency count. Also, while inserting
into the buffer, we take care that the buffers do not overflow.
If they exceed a pre-defined capacity- buffCapacity, the oldest
(first) item is removed from the bucket in which we are trying
to append the current projection. The oldest is chosen because
it has the maximum probability of becoming infrequent as we
are decaying the frequency counts with time. After this step,
we check if a new transaction has arrived. If yes, we return
back to the caller function and move on to process the next
transaction; otherwise we continue processing the current
transaction. Please note that we check this condition at the
beginning of refinement of every node.

After insertion of projections into the sub-trees, buffer
pruning is conducted. Buffer pruning prunes away infrequent
projections lying in the buffers. So, the buffers of affected
children of curr_node (children into which suffix projections
were inserted in the previous step — nodes 6 & 9 in Fig. 2b)
are pruned before we proceed with further refinement. Buffer
pruning is not done every time we visit a given node in our
traversal. This is because, there may not be many infrequent
projections accumulated every time we visit a node’s buffer.
So, by delaying it, we let the node accumulate a few more
infrequent projections and then remove them in one go. So,
buffer pruning is conducted in intervals of some minimum
time decided by a parameter y and the height of the node. It
can be observed that closer the node to the root, more filled
will its buffer be. So, buffers at lesser depth must be pruned
more often than the buffers at greater depth. So, the pruning
interval (PI) for each node is computed using the following
formula -pPI = [%*y* height(node)]; batch_size is the #
of transactions after which we perform intermittent pruning
(explained next). Whenever we are visiting a node, we prune
its buffer only when - it was last pruned at least PI
transactions earlier. To prune a given buffer, we visit every
buffer-node (nodes from all the buckets) and check if
partial_trans in it is e-frequent or not (after decaying its
frequency count). If it is not, then we check if the current
affected child (node for which buffer pruning is being
conducted) has a child in its childArr which corresponds to the
head of this partial trans. If it does, then we don’t delete this
partial transaction, as we might lose a potential FI by
removing it. Otherwise, it is safely deleted.

After pruning the buffer, we now select nodes which are
to be refined further. We prefer to deliberately delay the
refinement of certain nodes to save space and time. We let the
nodes accumulate more itemsets in their buffers before they
are refined or expanded for insertion into sub trees. This step
is critical in making the insertion fast. By doing this, we save
time by avoiding repeated insertions and removals of
infrequent itemsets. We let many infrequent itemsets to be
pruned away from buffers itself, rather than getting expanded
into a large number of infrequent subtrees. This delayed
refinement is achieved by a tuning parameter 6 and this
process is known is -deferring. So, after inserting the suffix
projections at a node and pruning its buffer, every affected
child is checked whether it is e-frequent or not. If yes, then we
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check whether the subtree corresponding to the head of the
projection to be inserted into it, is present in its childArr or
not. If this is so, we keep this node in a stack for its refinement
in subsequent iterations. For example, consider node 6 in Fig
2b. If it is e-frequent and there exists a subtree with root d
present in its childArr (node 7), we would want this node to
be refined further and thus, push it into the stack. However, if
the subtree doesn’t exist, then we check if the node is 6-
frequent or not. If it is so, only then we would want this node
to be refined further and we push it into the stack. Else, we
don’t refine this node and let it accumulate more transactions
in its buffer. This reduces creation of infrequent subtrees in
the forest. After this we proceed for the next iteration, in which
the nodes accumulated in the stack are refined.

Intermittent Pruning. After a fixed batch (batch_size) of
transactions are received, we conduct intermittent pruning.
This is for timely pruning of infrequent subtrees in the forest,
which makes insertion fast & efficient. In this step, we visit
each node of every BFI-Tree in DFS order, and delete it along
with all its child subtrees, if it is infrequent. Removing the
subtrees beneath infrequent nodes doesn’t affect the accuracy
of the algorithm because all itemsets in those subtrees can
never be frequent. If however, the node is e-frequent, we do
not delete it. If the node we visit in the traversal is a leaf, we
prune the FP-tree beneath it, as explained in [5].

In principle, deletion of sub-tree in BFI-tree does not affect
the other branches of the tree (and other trees as well). Unlike
other algorithms, e.g. DSM-FI [4], we do not need to update
or remove items from other branches. This is because AnyFI
enumerates all possible suffix projections of the incoming
transactions, which get stored in independent branches. The
frequency counts of itemsets represented by the other
branches have no connection with the branch being deleted.
Hence, our pruning step is accurate.

Mining BFI-forest. Mining for FIs in BFI-forest is very
simple and straight forward. In the insertion step, we have
inserted suffix projections of all incoming transactions in the
trees, and within each tree we have enumerated suffix
projections of those partial transactions and inserted them
either into the tree as subtrees or into the buffers. This makes
mining task easy, without the need of enumerating candidate
itemsets like in apriori or generating conditional trees like in
FP-growth. This makes AnyFI mine faster than the existing
algorithms (see section 4). All that is needed is to do is to
empty all the buffers in the trees (traversing in DFS or BFS
order) and then traverse the tree again in DFS order
accumulating the itemsets whose frequency counts are greater
than 0. So, as we traverse down, at every node we check if it
is o-frequent. If yes, we store the itemset represented by that
node in Flset, which is a list of FIs. Note that each node in
the BFI-tree represents an itemset with items in the path from
root to this node. Whenever an external node is encountered,
we simply mine the FP-tree beneath and concatenate all the
FIs that come from FP-tree with the itemset represented by the
current node, and add all of them to FiSet. Please note that
when we mine a BFI-tree with root node having an item say
a, all the FIs that start with a are mined from this tree only.
This is because, while inserting a given transaction say
<abcd>, we insert all its suffix projections into their



respective trees. So, <bcd> is inserted into a tree with root as
b and <cd> is inserted into a tree with root c. The contribution
of transaction <abcd> to the frequency count of itemset {bcd}
is taken care by this process. So, to mine for {bcd}, it is not
required to traverse the tree with root a.

We have seen that, mining for FIs has two steps — 1)
emptying of buffers and 2) traversing to accumulate FIs. We
had empirically observed that emptying buffers is the step that
takes maximum time. Traversal for FIs takes time in order of
milli seconds. So, we have made emptying of buffers step
anytime, i.e. it proceeds as long as the time is available and
once the quantum of time allotted by the user expires, the
algorithm exits from this step and quickly traverses the forest
for accumulating FIs. In this traversal, the residual partial
transactions in the buffer, if any, are ignored. Consequently,
we get a less accurate result when time allowance is less.

E. Why AnyFl is efficient?

Since, AnyFI tries to enumerate all possible suffix
projections of transactions at all levels of BFI-Trees and insert
them, the mining of FIs merely requires a traversal of its trees.
The insertion of a transaction into BFI-forest is a DFS
traversal of multiple trees in the forest, where each traversal
cost would be O(L), where L denotes # of nodes accessed in
the tree = yt, ™ _ Here At is the avg. height of a BFI-tree

=1 Gm-ror
and m is the avg. length of transactions. In our algorithm, we
have applied techniques like 6 -deferring, buffer pruning,
intermittent pruning and usage of FP-tree to save space and
time (traversal cost). We used FP-trees at a certain height
(Max_height) in the BFI-trees. This is because due to
enumeration of so many suffix projections, the branching in
the tree becomes very high at greater depths of the tree; and
the itemsets indexed in those branches would mostly be
infrequent. If the branching is allowed to grow beyond
Max_height, it would lead to repeated creation and deletion of
such infrequent subtrees. FP-trees are compressed trees and
are efficiently mined when their sizes are small. That is why
we store the suffix projections beyond Max height into FP-
trees, without enumerating their projections further. This
saves memory and time. In addition, 8 -deferring helps in
avoiding creation of infrequent subtrees and thus saving their
repeated creation and deletion. Similarly, buffer pruning and
intermittent pruning also aid in reduction of infrequent
subtrees. As a consequence, the worst case number of nodes
visited would become: L = yMox-Height_m

o oo In fact, the actual
number of nodes visited is much lesser than this figure
because of pruning techniques used. The value of Max_Height
is usually chosen <=5, thus making L a polynomial of m of
order <= Max_Height.

IV. EXPERIMENTAL ANALYSIS

All experiments were performed on a Linux workstation
with an i7 processor & 32 GM RAM. All programs were
implemented in C. Both synthetic and real data sets were used
for experimentation. The synthetic dataset /MDI000T1014
has 1M transactions, drawn from 1000 items, with avg.
transaction length of 10 and average FI length of 4. It was
generated using IBM Synthetic Data Generator [17]. The
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details of the real datasets are given in Table III. Retail dataset
[18] contains market basket data from a Belgian retail store.
MSNBC [19] is a click stream dataset describing page visits
on msnbc.com. We evaluate the results produced by our
algorithm using precision and recall.

TABLE III. REAL DATA SETS

Dataset #Trans #Items Avg Trans Len
Retail 88162 16470 10.3
MSNBC 989818 17 1.71

In Any-FI, we mine BFI-Forest for FIs, with support o. At
this support, we get precision = 1, i.e. the mined result will not
have any itemset which is not o-frequent. However, we may
miss out some of the FIs, leading to reduction in recall. In our
experiments, we measure the quality of our results by studying
the effect on recall with varying avg. speed of transactions. To
simulate a stream with varying inter-arrival rate, we use
Poisson streams, which is a stochastic model used to model
random arrivals [20]. It takes in a parameter A, which controls
the speed of the stream. For A = 1/ x, the model generates an
expected number of A tps, with expected inter-arrival time of
x seconds between two contiguous transactions. The values of
the parameters chosen for experimentation are as follows:
Max Height=4, 8 =0.05, y =2, batch_size=10000, f=0.9,
buffCapacity = 100 and hash_size is 10% of |I|.

In the first experiment, we analyze the effect of varying
stream speed (A) with different support thresholds (o) on
recall (Fig. 3a), memory (Fig. 3b) & mining time (Fig. 3¢) on
IMD1000T10I4 dataset with €=0.005. For measuring the
mining time in this experiment, we have let all the buffers in
the forest get emptied without any interruption. The results
show that recall (close to 100%) is not affected by increase in
stream speed. The memory consumption however, has
reduced as more transactions get buffered at higher speeds and
thus stopping the forest to grow large. Mining time has also
reduced with increase in stream speed due to reduction in

Fig. 3. Effect of varying stream speed (1) and ¢ on (a) Recall (b) Memory
(c) Mining time for IMD1000T1014 dataset; (d) Recall for real datasets.
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number of nodes visited in its traversal. Fig. 3d shows the
variation in recall with increase in stream speed for two real
datasets — retail and msnbc, for €=0.002 and 0=0.01, with
max_height=2 for retail and max_height=4 for msnbc. The
retail dataset has a large dictionary size due to which choosing
max_height>2 leads to high memory consumption. The
reduction in recall observed for retail dataset with increase in
stream speed is because of loss of transactions from buffers
occurring at higher stream speeds.

In the second experiment, we study the quality of FI
mining result with variation in time allowance to mine. Fig.
4 presents the effect on recall with increase in time allowance
for mining, which is the anytime mining feature of our
algorithm. We conduct this experiment on IMD1000T 1014
and retail datasets with 1=20000, €=0.0025 and ¢=0.005.
The result clearly shows that AnyFT is able to output mining
result with compromised accuracy, within a few milli
seconds. And then it is able to improve its recall with increase
in time allowance to mine, for both the datasets.

In the next experiment, we compare the speed handling
capacity and memory consumption of AnyFI with the existing
algorithms for IMD1000T1014 dataset (¢=0.005 & ¢=0.01).
The batch size in all of them is chosen to be 10,000. The
results given in Table IV, clearly show that these algorithms
have limited budget, whereas Any-FI is able to perform for
speeds upto 60,000 tps for the same dataset.

TABLE IV. SPEED AND MEMORY OF BUDGET ALGORITHMS

Algorithm Category Speed (tps) Memory (MB)
FPStream Tilted Time Window 27000 99
SWP-tree Sliding Window 12000 530
DSM-FI Landmark Window 9200 1200

VSW Sliding Window 900 700
AnyFI Damped Window upto 60000 600 -3400

Finally, we compare the mining time of FP-growth, DSM-
FI and AnyFI for 100KD100T 1014 dataset (results in Table
V). For fair comparison, we insert the complete dataset into
the summary structures of all the three algorithms without
conducting any pruning, and then mine for FIs. Mining in
AnyFI is running in complete mode, i.e. without anytime
interruptible feature. The results show that AnyFI performs
faster. It is worth noting that FP-growth is used in SWP-tree
and FP-Stream.

TABLE V. COMPARISION OF MINING TIME

Algorithm Mining Time

FP-growth 5.8 sec
DSM-FI 3.3 sec
Any-FI 1.2 sec

V. CONCLUSIONS & FUTURE WORK

In this paper, we presented AnyFI which is the first
anytime FI mining algorithm for data streams. AnyFI
incorporates both the functionalities of an anytime algorithm
— (1) ability to handle variable stream speeds, & (ii) ability to
give an immediate mining result and improve its accuracy
with increase in time allowance. AnyFI uses a novel data
structure known as BFI-forest, which handles varying inter-
arrival rates of data in the stream. Also, mining BFI-forest for
FIs requires a simple traversal of its trees without generating
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any candidate itemsets in apriori like methods or conditional
trees in FP-growth like methods, thus making it very efficient.
The experimental analysis presented show that AnyFI can
handle higher stream speeds while maintaining high recall.

In future, we plan to parallelize AnyFI for efficient FI
mining of multi-port data streams.
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